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1. INTRODUCTION 

This part  of the lecture series consists of two lectures on the theory 
of homogeneous and heterogeneous nuclear reactors. The diffusion theory 
model will be the main topic of discussion. I will talk about the ideas on 
which elementary reactor theory is based and show a list of results for 
the one-group and two-group diffusion theory approximations. You will be 
able to do a rudimentary design of a slow reactor on the basis of these 
lectures and the content of the lecture notes. Judging from the experience 
of my students at the University of Cincinnati, it will take you from 20 to 
60 hours to first complete an acceptable, elementary design analysis. 
(See Section 15.0) 

No proofs or derivations will  be given in this coverage but the lecture 
notes point out where proofs and derivations can be found. In a practical 
sense it is appropriate to leave out detailed considerations both in  the 
lectures and the notes. Reactor theory, like any other technical topic, 
can only be learned through intensive self-study and the working of lots 
of problems. This set of two, short lectures cannot possibly give you a 
detailed understanding of reactor theory. It is therefore meant to serve 
two particular purposes: (1) It should teach you what are the important 
concepts in  reactor theory and indicate classical references you can read 
if  you feel an urge to understand these concepts. (2) It should provide you 
with a list of steps to follow i n  the execution of a rudimentary reactor 
analysis i f  you either feel the urge or are constrained to compute without 
the advantage of understanding what you are doing. 

These sources are listed below together with an alphabetic designation 
symbol which is used in the text to indicate the source of a particular 
statement or to point out where one can obtain a more comprehensive 
coverage of a particular topic. For example, (D, 129-134;156-159) means 
"look at pages 129-134 and 156-159 in Neutron Transport Theory by B. 
Davison". 

a 

These notes a r e  based upon a relatively small number of sources (four). 

Symbol Reference 

D B. Davison, Neutron Transport Theory (Book), Oxford Press 
(19 57) 

ww A. M. Weinberg and E. P. Wigner, Physical Theory of Neu- 
tron Chain Reactors (Book), University of Chicago Press 
(1959) Second Impression 
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Symbol Reference 

GE S. Glasstone and M. C. Edlund, Elements of Nuclear Reactor a 
Theory (Book), Van Nostrand Company (1958) Seventh Printing 

CPH Case, Placzek and de Hoffman, Theory of Neutron Diffusion 
Vol. I (1952), U. S. Chamber of Commerce 

Each of these references enjoys an excellent reputation and can be found 
in any good technical library. CPH contains extensive tabular results and 
graphs of important functions in diffusion theory. After reading GE, one 
should go on to D, WW, and CPH to refine his understanding of reactors 
and neutron transport. D and CPH require a knowledge of complex 
variables. 



2. CHAIN REACTOR (WW, 168-180; 1-18) 

The first concept to learn is the idea of a chain reactor. A chain reactor 
involves two essential parts: (1) fuel  and (2) chain carr iers .  In a chain re- 
actor, the interaction of a chain carr ier  with the fuel  must produce the 
following: (1) the liberation of energy and (2) new chain carriers. Chain 
c a r r i e r s  are produced anew by the same energy-liberating process which 
they induce when they interact with the fuel. 

A chain reaction is self-sustaining if and only if the rate at which chain 
c a r r i e r s  are produced is greater or  equal to the rate a t  which chain 
carriers are expended. If the production and expenditure ra tes  are equal, 
the reactor is said to be critical and in  this state its power output is 
constant. 

Our concern will be with nuclear chain reactors. In this specific instance, 
the fael is a collection of fissionable nuclei and the chain carriers are neu- 
trons. The energy-liberating reaction is fissioning of the fuel nuclei which 
is induced by neutron absorption. Hence, each fission event in a nuclear 
reaction corresponds to the expenditure of one neutron, i.e., one chain 
car r ie r .  

11 



3. CRITICALITY (WW, 168-180) 

a A number called the criticality factor is used to represent the degree 
to which a nuclear chain reactor is self-sustaining. Many people take it 
for granted that the criticality factor, C, is a constant but this  is not 
true - the criticality factor need not be constant in the general sense. 
In general, the criticality factor is defined as the ratio of the neutron 
production rate  to the neutron loss rate. This defines the so called dynamic 
criticality factor. When the reactor is critical, C is a constant by defini- 
tion, i. e., C = 1 for a critical reactor. But when the reactor is ndt ‘in the 
critical state, the neutron production and loss ra tes  contain energy de- 
pendent transients and C is time dependent. 

Generation Model - For the present we will use the idea of Criticality 
given by the generation model. This will work as long as we deal only with 
critical systems or near-critical systems, i. e . ,  0. 9 < C < 1.1- In the 
generation model, one assumes that the reactor process can be described 
in te rms  of a number of successive neutron generations wherein the n-th 
generation of neutrons is solely responsible for the production of the 
(n + 1)-th generation. This is a typical biological picture. In this model, 
the criticality factor is tacitly assumed to be a constant and is defined to 
be the ratio of the neutron populations in two successive generations. 

Specifically, if  Nn represents the total neutron population for the n-th 
generation then the criticality factor is 

and 

where N1 is the neutron population of the first generation. Now this way 
of looking at things assumes that it is meaningful to ascribe a temporal 
separation between successive generations which is also a constant. This 
time interval is denoted by/ and is called the generation time. In this  
context, the time interval between the first and n-th generation is ( n - l ) e .  
And, if one considers the first generation as existing at time zero, the 
time of the n-th generation is tn = (n - 1)l .  This identification allows one 
to get a neutron production rate  equation which involves only the criticality 
factor and the neutron population at a time t. The result is 

dN/dt = N (log,C)/k 

N(C - I ) / !  (if c is close to unity) 

12 
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From this equation one finds that the neutron population at time t is 

N(t) = N(t = 0) exp [ [C - 1)t/~?] (3.4) 

The generation time for thermal reactors is about 0.1 sec. Hence, if 
C = 1.005, for example, the reactor power level will increase by 
exp (0.05) = 1.06 in one second and 1.65 in 10 seconds. This is a suffi- 
cient time for automatic control systems to dampen a power excursion 
and return the reactor to a critical state. If C = 0.995 the reactor power 
level will decrease by 1.06 in one second. 

When the criticality factor is less than unity, the reactor is said to be 
s u b c r i t i c e  --Then the criticality factor is greater than unity the reactor 
is said to be supercritical. The power output of a non-critical reactor 
is a function of time; only when the reactor is critical is its power output 
constant. In order to increase the power level of a reactor from PI to 
P2 > Pl, one ailows it to go supercriticai, €or a time sufficient €or the 
fission rate to increase to the desired level P2, and then returns it to 
the critical state. It will then provide a constant power output P2. The 
power level is reduced by allowing the reactor to go subcritical until 
the power level falls to the value desired. (See above numerical example 
for C = 1.005 and C = 0.995. ) 

13 



4. NEUTRON REACTIONS WITH NUCLEI (D, 1-14) 

We will discuss the reactions of neutrons with nuclei in a very abbreviated 
manner. Only those aspects of direct concern to reactor calculations will be 
mentioned. For our purposes there exist two general types of neutron- 
nucleus reactions. One of these is the absorption reaction and the other is 
the scattering reaction. A neutron is absorbed by a nucleus and disappears 
from the scene in an absorption reaction. Excepting the instance wherein 
neutron absorption induces fissioning of fuel nuclei, we will not concern 
ourselves with the possible consequences of neutron absorption other than 
that it represents the loss of one chain carrier. In the scattering reaction, 
a neutron collides with a nucleus, t ransfers  kinetic energy to this nucleus 
and then bounces off, somewhat less energetic, and in a different direction 
from that in which it was traveling prior to the scattering collision. If the 
neutron scatters elastically, both momentum and kinetic energy are con- 
served during the collision. If the neutron scatters inelastically, momentum 
is conserved but kinetic energy is not conserved, and a gamma ray is 
emitted from the target nucleus. All neutron scattering is assumed to be 
elastic scattering in these notes. We will not discuss inelastic scattering. 

One particular type of absorption reaction, namely, the fission reaction, 
is clearly important in reactor theory: without the fission process nuclear 
reaction could not exist. The fission process consists of a nucleus splitting 
into fragments. Any nucleus can be made to fission i f  it is struck by a 
sufficiently energetic neutron. The fissioning of uranium is the principal 
fission reaction used in nuclear reactors. Uranium nuclei are the reactor 
fuel. Uranium-235 (U235) undergoes fission upon absorption of both fast 
and slow neutrons, and, in fact, is more likely to fission the smaller 
the neutron energy. U235 requires fast neutrons with energies of at least 
1 meV to induce fission to an appreciable extent. In the fission of a U 235 
nucleus induced by slow neutrons, several neutrons are emitted. Table 
4. la  lists the probabilities for the emission of n neutrons per fission in 
U235. The average number of fission neutrons is denoted by the symbol v. 
v e 2. 5 for U235. Tables 4. l b  and 4. IC list v, microscopic c ross  sections 

About 0.9925 of all fission neutrons emitted a r e  ejected within a time 
interval of sec. These fission neutrons are called prompt neutrons. 
Prompt neutrons are emitted from the highly excited fission fragments 
into which the uranium splits upon fissioning. The remaining fraction 
(0.0075) of the fission neutrons are emitted by the daughters of the radio- 
active fission fragments. These neutrons appear anywhere from fractions 
of a second to minutes after the fission event and are called delayed neu- 
trons. Table 4. 2 lists the six delayed neutron groups for fissioning of 

(see Section 5) and q (see Section 7) for U, U 235 , pu239 and ~ 2 3 3  

14 



TABLE 4. l(a) 

PROBABIL;ITIES FOR EhrnSION OF B hX'u"rIt0NS 
PER FISSIONIN U235 (WW, 114) 

Neutron n 
' Energy 0 1 

80 keV 0. 02 0. 17 0. 36 0. 31 0. 12 0. 03 2.45 

2 3 4 5 = nave 

1.25 meV 0. 02 0. 11 0. 30 0.41 0. 10 0. 06 2. 65 

TABLE 4.l(b) 

THERMAL* CROSS SECTIONS, AND T,I AND v FOR $35 
NATURAL U ANI) (W", 124) 

- 
u235 U pu239 

~ 

OS 10 barns 8.3 barns 9.7 barns 
Oa 697 barns 7.7 barns 1025 barns 
O i  579 barns 4.2 barns 738 barns 
77 2. 07 1. 34 2. 09 
V 2.47 2.91 

*O. 025 eV neutrons 

TABLE 4. l(c) 

AND v FOR 1 meV NEUTRONS (WW, 129) 

L u23 5 u23 3 P u 2 S  

77 2.3 2.45 2.7 
U 2.65 2. 7 3. 0 



U235 and their total yield. Although the delayed neutron yield is small, 
their long delay times serve to increase the average “generation” time, 
A?, from the value loW3 sec which would occur if only prompt neutrons 
were emitted, to about 
therefore, makes reactor control possible. 

the reactor power level increase during a one-second excursion with 
C = 1.005? 

sec. The existence of delayed neutrons, 

Problem: If-only prompt neutrons were emitted, by what factor would 

Answer: e5 E 150. 

The energy distribution of prompt neutrons is 

f(E) = 0.484 exp (-E) s i n h c E  (See Figure 4.1) (4.1) 

The meaning of f(E) is as follows: The fraction of all prompt neutrons 
emitted with energies in the range dE at E is f(E)dE. The average prompt 
neutron energy < E > is 

00 
< E  > = Ef(E)dE = 2.0 meV 

0 
(4.2) 

The most probable energy is 0.72 meV and one-half of all prompt neu- 
trons emitted have energies below 1 .6  meV. The fraction F(E) of all prompt 
neutrons emitted which have energies less  than E is plotted in Figure 4.2. 
Nearly all fission neutrons a r e  emitted with energies below 10 meV. When 
the fission spectrum is mentioned in textbooks and technical art icles it is 
to the prompt neutron spectrum that the authors refer. 

The power output of a reactor is determined by the number of fission 
reactions occurring per second. The energy release per fission event is 
about 200 meV which corresponds to 3.2 x watt-sec. Hence 
3.1 x l o l o  fission events per second are required to produce 1 wattof 
power. 

3.1 x 1010 fissions/sec = 1 watt of power (4.3) 

On this basis the energy supplied when all U235 nuclei contained in 
one gram of U255 undergo fission is approximately one megawatt-day. 

Re marks: 

1. 1 eV = 1 . 6  x 
2. 1 meV = 1.6  x e rgs  = 1 .6  x watt-sec. 

ergs  = 1.6  x 1 O - l ’  watt-sec. 

16 



0 .4  

0 . 3  

f(Ej 0.2 

0 .1  

0 

NEUTRON ENERGY, meV 

Fig. 4 . 1  - Prompt neutron energy distribution f(E). This 
distribution (spectrum) applies to U235 and 
pu239 
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3. The number of atoms Na of a given element with atomic weight Aw 
contained in one em3 of material is 

(4.4) Na = &. m x 6.025 x 10 23 per cm 3 

8 

where m is the mass of the given element per em3 of material. In a 
monoatomic material m = p, the mass density. 
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TABLE 4.2 

DELAYED NEUTRON CHARACTERISTICS (WW, 136) 

Number Per 100 Fission Neutrons Half - Decay 
Life Constant Energy 

(Sec- l) (Mev) ~ h 2 3 2  u233 u235 u238 pu239 (see) 

54 0. 0128 0. 25 0. 085 0. 020 0.03 0.015 0. 01 
22 0. 0315 .56 0. 35 .075 . 18 . 17 . 06 

5. 6 0. 125 .43 0. 45 . 105 . 2 2  . 2 8  045 
2. 12  0.325 .62 1. 20 . 075 .23 . 7 1  .085 
0. 45 1. 55 0. 42 0. 45 0.025 .07 .42 0. 03 
0. 15 4. 5 - 0. 09 0. 02 0. 15 - 

2. 6 0. 30 0. 75 1. 75 0. 23 

Number of delayed neutrons 
per 100 fissions 6. 3 0. 78 1. 80 4.4 0. 67 
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TABLE 4.3 

a 

CONSTITUTION OF NATURAL URANIUM (WW, 5) 
c)r)* $38 U2 35 UL 3- 

Abundance* 99.28% 0. 71% 0.0058% 
Half -1if e 4.51X109 yr 7. lx108 y r  2. 6x105 y r  

*Weight percent 

TABLE 4.4 

TYPES OF NUCLEAR REACTORS (WW, 15) 

Point of View - Type 

Energy of neutrons Thermal, intermediate, 

Fuel 
causing fission 

Natural U, U 235 , u238 9 

fast* 

pu2 39 
Moderator 
Cooling System Conduction, circulating coolant, 

circulating fuel, boiling 
Structure Homogeneous, heterogeneous, 

solid or liquid materials 

*See Table 7.1 for associated neutron energies. 

H20, D20, Be, C, BeO, Be2C 
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5 .  CROSS SECTIONS AND MEAN FREE PATH (D, 1-14) 

When a neutron strikes a nucleus the type of reaction which will occur 
is not absolutely determined in the sense that one can say 'Yhis particular 
reaction will certainly be a scattering reactionrP or "this particular r e -  
action will certainly be an absorption reaction.'* However, it is possible to 
state the probability that a particular neutron-nucleus collision will result  
in a scattering reaction or in an absorption reaction. The practice is to 
represent the probability that a particular type of reaction will occur by 
stating the cross section for that reaction. Two types of c ross  sections 
a r e  used, the microscopic c ross  section, 0, and the machscopic  c ross  
section, Z. The microscopic c ross  section re fers  to neutron collisions 
with individual nuclei of a specific type while the macroscopic c ross  
section is used to specify the collision probability of neutrons in  bulk 
material which may be made up of several different nuclear types. The 
microscopic c ross  section depends only upon the neutron energy and the 
type of nucleus involved. The macroscopic c ross  section depends, in 
addition, upon the number of nuclei contained in  a unit volume of material. 

5.1 MICROSCOPIC CROSS SECTION 

The microscopic cross  section for a particular type of reaction is de- 
fined in t e r m s  of the number of neutron-nucleus reactions induced in a 
thin sheet of target material by a monoenergetic neutron beam which 
strikes the target sheet at normal incidence. In this definition the target 
material contains only one nuclear species. 

(number of neutron-nucleus reactions/cm2-sec) 
o =  (number of nuclei/cma) x (number of incident neutronslcm2 -sec) 

Fraction of target nuclei reacting per . seolond .- . 
0 =  Number of incident neutrons/cml-sec 

2 The dimensions of the microscopic c ross  section a r e  cm , the dimen- 
sions of an area. The unit used to specify microscopic c ross  sections is 
the barn; one barn is 10-24 cm2. 

Let os and a, be the scattering and absorption c ross  sections for neu- 
trons of a given energy and a given type of target nuclau.  Their sum 

o = os t Q 

is called the total microscopic c ross  section. 

22 
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The reciprocal of the macroscopic cross  section is the neutron mean 
freepath,  A. 

1 a = -  c (5.5) 

h is the average distance between successive neutron collisions. The 
free path between successive neutron collisions is exponentially distrib- 
uted. The normalized differential free path distribution is, 

X 

I. - 

5 . 2  MACROSCOPIC CROSS SECTION 

The Izlacrnscnpic cross sectior! fnr a particular type of reaction is de-' 3 .  

fined as the product of the microscopic c ross  section for that reaction and 
the number density of nuclei, N, i. e., the number of nuclei per unit . 
volume. 

2 = ON (5.3) 

The dimensions of the macroscopic c ross  section are cm-1. It is the 
probability per unit length of neutron travel for a neutron-nucleus 
reaction. 

(5.4) 
2 = Probability per unit length of neutron 

travel for a neutron-nucleus reaction. 

5 .3  MEAN FREE PATH 

and 

f=p(x)dx = 1 
0 

The meaning of p(x) is as follows: the fraction of all freeppaths ending 
in the intereal dx about x is p(x)dx. The fraction F(x)<xo) of all free 
paths of length x less than xo is, 

(5.7) 

F(x<x,F id the  cumulative free path distribution. It is interesting to 
v 

note that &re than half of the free paths are less than X as, 
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x F(x<X) = J Xe-Cxdx = 1 - e-zX = 0.632 
0 

(Remember CX = 1). 

Problem: Compute the fraction of all f ree  paL& less than 2h, 3X, 4X, 5X, 

Problem: Compute the average free path over the free  path range X <x< ~ 1 .  

5 .34  9X. Ans. 0.845, 0.950, 0.982, 0.993, 0.995, 0.9999. 

Hint: See Remark (4) at the end of this section. 

Problem: Compute the average free path over the free path range 
O < X < X .  

Ans. A(e-2)/(e-l)  G 0.418X 

5.4 CROSS SECTIONS FOR POEYATOMIC MATERIAL 

Consider now a material composed of n different nuclear types. Let 
E i  and Ni be the total macroscopic cross  section and the number density, 
respectively, for  the i-th nuclear type. The total cross  section for the 
material is, 

C = C1N1 + C2N2 + + CnNn 

and the neutron mean free path is, 

(5.9) 

A = l / Z  

Similarly, the macroscopic scattering cross  section for the material is, 

2 s  = Z s l N 1  + Cs2N2 + 0 + CsnNn 

and the macroscopic absorption CDDSS section is, 

(5.10) 
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The scattering mean free path is l /Zs and the absorption mean f r ee  path 
is 1/23,. One sees  that As, ha, and X a r e  related as, 

Remark (1): 

Remark (2): 

Remark (3) : 

Remark (4): 

(5.12) 

Note that cross sections a r e  additive, like rekistances in a 
ser ies  circuit; and that mean free paths combine like re- 
sistances in a parallel circuit. 

X is the average distance between successive neutron col- 
lisions. 

As is the average distance between successive neutron 
scattering collisions. It is always true that As Z h because 

If p(x) is the normalized differential distribution for a ran- 
dom variable x then 

Z S S  2. 

(5.13) 
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6. NUMBER OF REACTIONS PER UNIT VOLUME PER SECOND 
(D, 41-42); (GE, 148) 

Up to now we have looked at the way to describe the probability that a 
single neutron will experience a reaction of a particular type in a single 
collision event. In reactor calculations, however, one is concerned with 
the combined effect of all the collisions of many different neutrons with 
nuclei. It is possible to do reactor calculations by using the neutron 
number density, n, to represent the neutron population. However, in 
most work on reactor calculations, a quantity called the neutron flux, a, 
is used rather than the number density. The relations between n and CP 
are described in Section 8. 8. For the present it is sufficient to state that 
the neutron flux CP is the neutron track length traced out per unit volume 
in one second. Th i s  is an important concept and bears repeating.. . 
"the neutron flux is the neutron track length traced out per unit volume 
in one second," Is it the track length traced out by jiist one neutron? 
The answer to this question is: ONo.'' It is the track length traced out - 
by all neutrons in that unit volumeper second. This being the case, if 
onemultiplies the neutron flux by the macroscopic c ross  section the 
result  is the number of neutron-nucleus reactions per unit volume per 
second, i. e.,  the reaction rate per unit volume. This follows because 
C is the probability for one reaction per unit length of neutron travel. 
The following table summarizes the reaction rate  densities with which 
we will be concerned: 

C CP = total reaction rate density 

Cad, = absorption reaction rate density 

Csd, = scattering reaction rate density 

Cfd, = fission absorption reaction rate density 

Z;, C, and Cf are, respectively, the absorption, scattering and fission 
cross sections. In a homogeneous reactor 

mod fuel 
2, = Ca + Ca 

mod 
Cs = zs + Cs fuel 

where ' mod' and 'fuel' signify moderator and fuel materials, and 

fuel fuel fuel 
Ea = % + %fa 
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where 'nfa' means 'non-fission absorption.' The non-fission absorption 
c ros s  section for the reactor is 

mod fuel 
Enfa = =a + %fa (6.4) 

Problem: os = 10 barns, (J;t = 600 barns and of = 500 barns. Assume an 
atomic weight of 235 and a mass of 19 grams per cm3. If G = 
1015 cm/cm3-sec what is the scattering reaction rate  per cm3 
and the non-fission absorption rate per cm3? Hint: N = 
(19 x 6.025 x 1023/235) at/cm3, Zs = Nos = [19~6 .025~1023 /235}  

Problem: Compute the neutron mean free path from the data given above. 

[IO x 10-241 cm-1, onfa = aa - OF 

Hint: u = oa + os 
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7. DIFFUSION THEORY (WW, 181-218); (D, 

Homogeneous Infinite System 

94-102); (GE, 90-136) 

approximately, as Because most neutron c ross  sections behave, 
a = l/dE, the slower is the neutron the larger is its reaction probability. 
Hence, in order to minimize the amount of fuel required to make a reactor 
operate at a prescribed power level, slow neutrons are usually employed 
as the primary agent for inducing fission. Reactors for which this  is true 

- - 

are called thermal reactors because the kinetic energy of the neutrons 
which induce most of the fission events corresponds to the thermal kinetic 
energy of molecules at room temperature, i. e. , about 0.0254 eV (1 eV 
is equivalent to l1,60O0K). The kinetic energy of a neutron is KE = 1/2 
mnv2 ergs where mn is the neutron res t  mass in  grams and v is its 
velocity in cm/sec. (mn = 1.675 x 10-24 grams) The following neutron 
energy-temperature-velocity table is useful. (Table 7.1)  E is the neutron 
energy. (As an exercise start with column 1 and compute column 3; then 
do the converse. Remember 1eV = 1.602 x 10-12 ergs.) T is obtained 
from the relation E = kT where k = 1.38 x 
constant. T(0C) = T(0K) -2730K. 

emitted with energies in the meV range. A means for slowing these fast 
neutrons to the thermal energy level is required in thermal reactors. 
This slowing down o r  moderation, as it is called, is accomplished by 
mixing non-fissionable material with the fuel. This material is called 
moderator material. Fast neutrons slow down largely via elastic 
collisions with moderator nuclei. A good moderator material should 
have an extremely small absorption cross  section and be composed of 
light nuclei. Light nuclei are preferable to heavy nuclei because neutrons 
lose a larger fraction of their energy in elastic scattering collisions the 
lighter is the target nucleus. 

erg/oK is Boltzmann's 

It can be seen from Figure 4.1, however, that most fission neutrons are  

Before we concern ourselves with neutron slowing down, it will  be a 
good idea to look briefly at a hypothetical monoenergetic reactor in 
order to single out the complications that exist just as a consequence of 
reactor composition. In this reactor, fuel and moderator nuclei are taken 
to be homogeneously mixed (See WW, 378, line 3) and all neutrons will 
be assumed to be thermal neutrons, including fission neutrons. 
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TABLE 7.1 

NEUTRON ENERGIES AND 'TEMPERATURES' 

E(eV) T(OK) v(cm/sec) Type 

0.001 11.6 4. 37x104 Cold 
0,025 290 2.19~105 Thermal 
0.034 400 2. 6x105 Thermal 
0.052 
0.069 
0.086 
1. 0 
100 
104 
106 
108 
1010 

600 
800 
1000 
1. 16x104 
1. 1 6 ~ 1 0 ~  
1. 16x108 
1.16~1010 
1. 16x1012 
1. 16x1014 

3.1~105 

4.0~105 
3. 6x105 

1.38~10~ 
1.38~107 
1. 38x108 
1. 38x109 
1. 28x1010 
2.99x1010 

Thermal 
Thermal 
Thermal 
Slow (resonance) 
Slow 
Intermediate 
Fast 
Ultrafast 
Relativistic 

30 



7 . 1  MONOENERGETIC NEUTRONS 

The diffusion approximation for describing monoenergetic neutron 
transport in an infinite system is based on the assumption that Fick's 
diffusion equations are valid, There are two such equations. The first 
one connects the neutron current 3 with the gradient of the neutron flux. 

-c 

J = - D grad CP 

The constant D is the neutron diffusion coefficient. For the time being 
we will assume D is a known quantity. The second equation states that 
the rate at which the number of neutrons in a unit volume (n) increases 
as a result of neutron diffusion is 

These equations are valid if: 

1. The magnitude of grad @ is small 
2. Neutron scattering is isotropic in the laboratory coordinate system 
3. D is a constant 
4. The neutron cross  section is constant 

From Fick's equations and our understanding of how to compute the 
absorption reaction rate  density, Ea@, it is possible to write down the 
neutron population balance equation for an infinite system. This equa- 
tion is, 

(a) is the rate at which neutrons are added per unit volume, S being 
a source term, i. e., neutrons per cm3-sec supplied by some 
neutron source 

(b) is the rate  at which neutrons are lost per unit volume. 

If an/at = 0, the neutron population is stationary and the system is 
critical. 

A natural question, at this point, is: 'What is the source term S?" 
One answers this question by remembering that there are Zf@ fission 
reactions per unit volume per second and that an average of v neutrons 
are emitted per fission event. This reasoning leads to, 
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s -- v ZfG 

and the balance equation, for a critical system becomes 

dividing by D it follows that 

2 2 
grad @ + Bm@ f= 0 

2 - V C f  - Ca Bm = .- (*See Remark) 

Another symbol for the operator grad' is v 2  (Laplarian) which 3ill be 
used in all subsequent balance equation statements. The number Bm is 
called the material buckling of the system as it depends only on the - com- 
position of the reactor. (When we get to finite reactors it will tu rn  out 
that one designs a critical finite reactor by finding a size such that the 

2 associated geometrical buckling, Bg, for the finite geometry is just  equal 
to the material buckling associated with an infinite system*of the same 
composition. (See Section 8. 1.) 

By definition, the criticality factor f ~ a :  this infinite system is 

Neutron Production Rate 
Neutron Loss Rate C =  

(7.7) 

Conventionally, the criticality factor for this system is written as, 

where 

v=f 17 =- 
P fuel (7.9) 
&a 

*In m e  text books the quantity vf for an infinite monoenergetic system is denoted by k and called the 
multiplication factor. In an infinite system C and k are equal but in finite systems neutrons can leak out 
and C 
multiplication facto.;. for an infinite system is being talked about. 

k whenever leakage can occw. Some texts use the notation k, = 7jf to emphasize that the 
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(7.10) 

7 is the number of fission neutrons produced per neutron absorbed in 
235 the fuel and is a property of the fuel material alone. 77 = 2.07 for U 

and 1 .34  for U (U denotes natural uranium). 

f is called the thermal utilization factor. It is the fraction of all thermal 
neutrons absorbed which a r e  absorbed in the fuel. 

Remark  

Diffusion theory formalism uses the quantity L2 = D/Za called the thermal 
neutron diffusion a rea  or diffusion length squared. Physically, L is one- 
sixth the mean square  distance from the point at which a neutron starts 
diffusing to the point where it is absorbed. Using this notation one sees 
Bm can be written as 

2 

2 

2 Bm = (k - 1)/L2 

and the balance equation then becomes 

. 2 * + ( y )  * = o  

(7.11) 

(7.12) 

This form of the balance equation is used frequently. 

7 . 2  THERMAL AND FAST NEUTRONS 

Retaining an infinite geometry, to avoid the complications of neutron 
leakage, we will now introduce fast fission neutrons rather than assume 
all fission neutrons are emitted at thermal energy as we did in (7.1). In 
effect we now have two groups of neutrons (1) fast neutrons and (2) thermal 
neutrons. Some of the fast neutrons will be absorbed while slowing down 
to thermal energy. The fraction of all fast neutrons which escape absorp- 
tion during moderation (slowing down) is represented by the symbol p. 
A portion of the fast neutrons absorbed during moderation will cause 
fission, i. e. , all fissions are not caused by thermal neutrons. This effect 
is represented by the fast fission factor E .  E is the ratio of number of - all 
fission events occurring to those particular fission events induced by 
thermal neutrons. .In thermal reactors, E is barely larger than unity, in fast 
reactors it is, of course, quite large o r  they wouldn't be called fast reactors. 
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The source te rm for the thermal neutron balance equation is now 

L 

s "P[EVCf+] (7. 13) 

where + is the thermal neutron flux and Cf is the thermal neutron fission 
cross  section" The balance equation is 

V 2 + + B m + - - - O  2 

The criticality factor is by definition 

c -  Thermal Neutron Production Rate - 
Thermal Neutron Loss Rate 

(7. 14) 

(7. 15) 

(remember that q =: v Ef/Ca) 

Because we have included both fast and thermal neutrons in this for- 
malism, it is general and the multiplication factor k = pcqf, we obtain 
is the standard infinite medium multiplication factor quoted in the text 
books for a homogeneous system, 

k = pcqf (7.16) 

The above statement for k is called the four-factor formula. 

The criticality factor for a finite reactor, can be expressed as 

C = k P t P f z k P  

P- PtPf 

(7. 17) 

where Pt and Pf are, respectively, the non-leakage probabilities for 
thermal, and fast neutrons. The particular mathematical expressions 
for Pt and Pf depend upon the type of reactor one is concerned with and 
the specific theoretical model used to compute these probabilities. 
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Using the relation L2 * D/Za and the four-factor formula, the balance 
equation can be written as 

k - 1  
L V a d h + ' T  9 = 0  

2 and Bmas 

(7.18) 

2 k - 1  
B m = T  (7.19) 

Figure 7.1 is  a schematic representing the neutron cycle for a critical 
thermal reactor. 
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Fig. 7 . 1  Neutron Cycle f o r  Critical Thermal Reactor (GE, 202) 
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8. BARE HOMOGENEOUS REACTOR (WW, 378-412); (GE, 191-224) 

The theory of the bare homogeneous reactor is fundamental to all reac- 
tor  theory. It is relatively easy to use and in the multigroup formulation 
quite accurate. (In multigroup formalism, the neutron energy range is split 
up into several subranges, each subrange being called an  energy group. 
Neutrons in each group are treated as if they were monoenergetic so that 
diffusion theory can be used. Each group receives neutrons slowing down 
from the group above it and, in turn, supplies neutrons to the group below 
ite Except for their source terms, the equations for each energy group are 
the same as the diffusion equation for thermal neutrons we looked at in the 
previous section). We will treat  Bare Homogeneous Reaction theory in 
t e rms  of the First and Second Fundamental Theorems of Reactor Theory, 
which will be stated without proof 

a 
~ 

8.1 FIRST FUNDAMENTAL THEOREM OF REACTOR THEORY 

First mEdzmeE+al Theor e= ." 

1, The stationary neutron flux @(< E) in a critical bare  reactor is 
separable in space and energy. 

2. The space distribution of the flux& (3 is the fundamental solution to 
the wave equation 

V29 i Bg9 = 0 

By fundamental solution is meant a function which is positive throughout 
the reactor and which vanishes on the extrapolated boundary of the reactor. 
The extrapolation distance d is 0.7 A, according to transport theory, where 
h is the neutron mean free path., The constant Bi in the equation for @ is 
determined entirely by the size and shape of the reactor. It is called the 
geometrical buckling. 

The design of a bare critical reactor amounts to achieving equality 
between B& for the  chosen material composition and BH for the specific 
geometry concerned. 
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8 . 2  ALL THERMAL REACTOR (GENERAL) 

~s with a computation a Just as we started the discussion of infinite 
for the all-thermal o r  one-group approximation we will also begin the dis- 
cussion of finite reactors a simple one-group treatment Because all 
neutrons have the same e E, c3 (r, E) = constant (4 = +(r).  At 
a given point r in  the reactor we havFtha&, from the dioint of-reactor 
composition, 5 reactor is critical if D V ~  a + (vcf - Ea) a ,= 0, io e .  

2 k - 1  v + + L 2 + - o  

The First Fundamental Theorem states that, from a geometrical stand- 
point, a reactor if v2 # + B: + = 0, 

Hence for the critical state it follows that 

2 3 - 1  
g L  B 

We must now stop a moment to introduce the static criticality factor 
(approximation) and determine its value for a bare, all-thermal reactor. 
The idea of the static criticality factor is based on the following approxi- 
mation which is valid if  the  criticality factor is close to unity, i. e . ,  0.9 
< C I. I .  In the actual reactor a 

where P is the neutron ncm-leakage probability. One defines the number 
vs to be that value of v which gives 

In other words, vv is the particular va.lue of v required to make the reac- 
tor critical, The static criticality factor is defined as 

. .  

a If v' 
is greater than one and the reactor is supercritical. 

v, C is less than one and the reactor is subcritical. If v' < v, C 
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On this basis, the base reactor would be critical if k had the value k' 
given by 

k P - 1  2 
7 = B g  

where k' = V' Zf,'ZaJ i. e., V' = Eak' /Zf. 

Solving for k' and v' on obtains 

k' f l + B g  2 2  L 

and 

V' = Xa(1 + Bg 2 2  L )/Zf 

By the definition of k, 

(8.9) 

v = Zak/Zf (8.10) 

Now, having expressions for the numbers v' and v, the static criticality 
factor can be written as 

(8.11) 

In general, from the neutron economy structure, 

C = k P  (8.12) 

hence, it follows at once that the non-leakage probability P for an all- 
thermal bare  reactor is 

(8.13) 1 P =  
l + B g L  2 2  

This result always holds for the thermal neutron group, independently 
of the manner chosen to represent fast neutron behavior. 
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8 . 3  ALL-THERMAL SLAB REACTOR (COMPUTATIONAL EXAMPLE) 

The ideas listed above can be somewhat fixed in one's head by carry-  
ing through a simple example. Consider a slab reactor of physical 
thickness h. (See Figure 8.1). Let x = 0 be the center plane of the slab. 
According to the First Fundamental 

I , H d  
I I 
I I 

H = h + 2 d  

d = 0 . 7 h  = 0.7/C 
(d is the extrapolation 

x = -  
2 

Fig. 8. 1 

Theorem, Qi vanishes at x = k(H/2) and is positive on the interval 
-H/2 < x < H/2. The fundamental solution to 

v2Qi + Bl@ = 0 (8.14) 

gives 

Bg = (n/H) Slab Reactor (8.15) 

The fundamental solution, itself, being 

Qi (x) = K cos (nx/H) (8.16) 

The constant of integrationK is determined by the power level of the 
reactor. The power produced by a slab reactor is infinite, however, i f  
one considers the power P generated in a column of length h through the 
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e slab with a base area of 1 cm2 and with its longitudinal axis normal to 
the slab faces, the constant K can be evaluated. 

The number of fission events per second in this column is the integral 
of Zfch over the physical thickness of the slab. 

Fission rate = KCf S h l 2 c o s  (nx/H) 
-h/2 

(8.17) 

(8.18) 

Because 3.1 x l o l o  fission per sec constitute a power production of 1 
watt, it follows 

If P were one watt, then K would be 

K = c3.17~ x 10101/[2ZfH sin (ah/2H)] (8.20) 

The power distribution for a reactor is: 

Power Dist. = 200- Zf@ meV/cm3-sec 

Zf * 
3.1 x 1010 watts 0 3  - - (8.21) 

In a thermal reactor, therefore, the shape of the power distribution is 
the same as that of the thermal flux. 
Problem: Compute the current of escaping neutrons at the faces of a 

critical slab reactor. 
J3 b Hint: J = qgrad ch, Jx = -$ @//ax. 

Problem: Compute the average flux in a critical slab reactor. 

Hint: < ch > = Shj2 @ dx/h 

Problem: Given P = 0 .1  megawatt, H = 142 cm, Z = 0.8;compute 
for a critical slab reactor. 

Hint: Remember the extrapolation distance d. 

-h/2 
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8.4 RECTANGULAR PARALLELEPIPED 

Let a, b, c be the physical dimensions of a parallelepiped reactor, 
along the x,. y and z axes respectively, with the origin at the center 
of the reactor. Let A’ = a + 2d, B’ = b + 2d and C’ = c + 2d be the 
extrapolated dimensions. 

In this  case 

@ (x, y, z) = Kcos ( 3 ) c o s  ($) cos(?) 

(8.22) 

(8.23) 

The constant K is again determined by the power level of the reactor. 

8.5 SPHERICAL REACTOR 

Let ro be the physical radius of the reactor and R = ro + d the ex- 
trapolated radius, then 

2 
B; = (+) 

K 
(r) = - r s in  (:’ 

The constant K is determined by the power level of the reactor. 

8 6 CYLINDRICAL REACTOR 

(8.24) 

(8.25) 

Let ro be the physical radius of the cylinder and h its length. Denote 
the extrapolated radius by R = ro + d and the extrapolated length by H = 
h + 2d and take the origin of the coordinate system at the center of the 
cylinder. Bl and (r9 z) are then 

@ ( r , z ) = K J o (  2.405r ) cos(?) 

Jo the zero order Bessel function of the first kind. 

(8.26) 

(8.27) 



8.7 MINIMUM CRITICAL VOLUME 

DV2@ = number of neutrons gained per unit volume per unit time by 

K = (Inverse Diffusion Length) 

L -- (Diffusion Length) 

an - D 2 @ -+- S - C, 

diffusion 

(Neutron Balance E q d i a n )  -- 
a t  

Gain Absorption 
Loss 

Reactors are usually designed to be critical at the smallest possible 
volume for reasons of economy if  nothing else. This is caiied the minimum 
critical volume. Table 8 , l  lists minimum critical volumes for three reac- 
tor  shapes. Note that, 

TABLE 8.1 

MINIMUM CRITICAL VOLUME 

Minimum Critical 
shape Volume 

Parallelepiped 161/Bm 

Cylinder 148/B& 

Sphere 130,/B& 

3 

for a specified composition, i. e. 
critical volume for a sphere is less than that for any other shape. 

material buckling &, the minimum 

8.8 SUMMARY OF DIFFUSION THEORY FORMALISM (MONOENERGETIC) 

?'= - D? 9 (Diffusion Current) 

e-r/L 
@ (4 = 

< r 2  > = 6 L2 (Mean Square Diffusion Distance - three dimensions) 

(Diffusion Kernel for Unit Point Source) 

e -X/L 
@(x) 2DK (Diffusion Kernel for Unit Plane Source) 
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B~ = (n/a)2 + (n/b)2 + (n/c2) Rectangular Parallelepiped 
g 

= (T/R)~ Sphere Bg 

Bg = (2, 405/R)2 + ( T / H ) ~  Cylinder (R, H) 

Dynamic Criticality Factor : 

Neutron Production Rate 
Neutron Loss Rate c d  = 

Static Criticality Factor: 

U c = -  
up 

v = actual number of fission neutrons produced per fission 

v r  = required number of fission neutrons produced per fission so that 
C = l  

Neutron Number Densitv n 

n = number of neutrons per unit volume 

n(E)dE = number of neutrons per unit volume with energy in the range 
dE at E 

n(E) = number of neutrons per unit volume per unit energy at E 

fi 7: 6 O0 n( E)dE 

n (3 = number of neutrons per unit volume at r' 
n (r", E) dEdF= number of neutrons in the volume element d;f at ;f with 

n(F9 E) = number of neutrons per unit volume per unit energy at Fand E 

n ( 3  = Jn(F9E)dE 

n(E) = Jn(F,E)dif 

n = JdF Jn(i?? E) dE 

n(;, E,3) = number of neutrons per unit volume per unit energy per unit 

n = JdF I d 6  Jn(F9 E, 6) dE 

energy in the range dE at E 

solid angle at .', !?and velocity in  direct ion3 
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Scalar Neutron Flux @ 

9 (F, E) = n(F, E) v (E) neutrons per cm2-sec, per unit energy at ?, where 
v is the neutron velocity magnitude associated with energy E, i. e . ,  

a 
v = m. 
9 (F, E) = track length traced out per unit volume per unit energy per second 
at; by neutrons with energy E. 

+ (E)  = J@(if,E)dF 

9 (3 = J@ (i?, E) dE 

9 = JdFJ@(F ,  E)dE 

Macroscopic Cross Section C 

C = No (N = number of nuclei per cm3) 

C (E) = probability per unit of track length for a neutron of energy E to 
react with nuclei 

C (E) Ch (E) = number of reactions per unit energy per unit volume per 
second undergone by neutrons with energy E 

C (E) @ (F, E) = number of reactions per unit volume per unit energy per 

J C  (E) + (F, E) dE = number of neutron reactions per unit volume per 

S C  (E) 9 (F, E) &= number of reactions per unit energy undergone by 

S d f  J C  (E) (E, 3 dE = total number of neutron reactions per second 

Cs = scattering reaction cross  section 

Ea  = absorption reaction c ross  section 

second undergone by neutrons with energy E at 

second at i' 

neutrons with energy E 

Zf = fission reaction cross  section 

DB2 = leakage cross  section (diffusion theory) 
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9, FAST NEUTRON LEAKAGE 

9 . 1  SECOND FUNDAMENTAL THEOREM 

The fast neutron non-leakage probability Pf is specified by the Second 
Fundamental Theorem of Reactor Theory. 

Second Fundamental Theorem: 

The non-leakage probability for fast neutrons during moderation in a 
uniform bare reactor* is the Fourier transform of the slowing down 
kernel K(r), 

*Note t.hat nothing is said aboug the reactor having to be critical in 
the Second Fundamental Theorem. 

The slowing down kernel K(r) is defined as the number of thermal 
neutrons created per unit volume at position r in an infinite system, 
given one fission neutron a t  the origin and no absorption. The integral 
of K(r) over all space is unity. 

2 Jm 47rr K(r) d r  = 1 
0 

(9.2) 

Slowing down kernels can be theoretically derived, but in practice, 
synthetic slowing down kernels, obtained by making analytical fits to 
experimental data, are usually adopted. A restricted description of the 
neutron slowing down process and the use of slowing down kernels 
follows immediately. 
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1. 

2. 

How far does the neutron travel during the slowing down process? 
This distance is represented by the quantity r which is defined to 
be one-sixth the average square distance between the fast neutron 
origin and the point at which it becomes thermalized. 7 determines 
the fast neutron non-leakage probability. 
How many fast neutrons avoid absorption while slowing down? As 
mentioned before, this quantity is represented by the fraction p. 
p is called the resonance escape probability in honor of the first 
reactors which used natural uranium fuel. 

We will assume that fast neutrons slow down via elastic collisions with 
mDderator nuclei (and reflector nuclei in the case of reflected reactors). 
The magnitude of the fractional neutron energy loss per collision is an 
extremely important quantity. It determines how many collisions are re- 
quired to thermalize fast neutrons and this number determines both the 
type of slowing down kernel one should use and, together with the absorp- 
tion c ross  section, the value of the absorption escape probability p. 

When a neutron scatters elastically with a nucleus having a mass number 
A, the largest fraction of i ts  energy that can be transferred to the nucleus 
is (1 - cy), where 

2 
C Y = ( $ )  (9.3) 

(This is not the cy used in (WW). It is the Q! used in (GE). ) Notice that 
the lighter the nucleus the smaller is Q and hence the larger the maximum 
fractional energy loss. This fact is illustrated by the following table. 

Nucleus A Q! (1 - a )  5 
H 1 0 1 1.000 
Be 9 0.640 0.360 0.209 
c 12 0.716 0.284 0.158 

0.222 0.120 0 16 0.778 
Fe 56 0.932 0.068 0.0353 
U 235 0.984 0.016 0.00838 

The quantity 5 is the average logarithmic energy decrement per collision, 
Eb and E, being the 



neutron energy before and after collision, respectively. 

5 is useful because f o r  a given moderator nucleus it is a constant in con- 
trast to the absolute amcunt of energy lost which decreases with neutron 
energy. This being the case, the average number of collisions required 
to slow a neutron from energy El to energy E2 El is 

Ave. Number 

from E1 to E2 5 
- .- HogebE1/E2) - 

(9 .5)  

Because the average fission neutron energy is 2 meV it is useful to re- 
member that 

(9 .6)  
Ioge(2 x IO6/. 0254) 18 .2  

-I__ - m I 
I~ 

Ave. Number of Collisions to 
Thermalize a 2 meV neutron 5 5 

Many authors use the neutron lethargy, u = log, (107/E), rather than the 
energy in slowing down calculations. (Given u, the associated energy is 
E = lo7 e-u eV). The reason for this formulation will soon be evident. 

Problem: Verify that du = -dE/E and u2 - u1 = log, (El/E2). 

slowing down without absorption would be 
18.2/5 

If the cross sections were energy independent, the probability p for  

p =  Q9.7) 

because Zs/C is the probability to scatter rather than suffer absorption 
in  any given single collision and an average of 18.2/5 Pvsuccessfult7 scat-  
tering collisions are required for thermalization. Cross sections are 
energy dependent, however, so the simple constant cross  section scheme 
i s  not valid as it stands. It can be used, though, to approximate p by 

6 dividing the energy range from 0.0254 eV to 2 x IO eV into a succession 
of non-overlapping energy intervals mi,, with lower bound Ei, in each of 
which the cross sections are almost constant. The probability to get 
through the f-th interval is then 
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(9.8) 

The probability to run the whole gamut of energy intervals is p, by 
definition, 2nd is given by 

Because the logarithim of a product is the sum of the logarithim of the 
factors is valued, one has, 

(9.10) 

which can be approximated by the integral 

2x1 06 
l o g p =  .I- [log ( ?&)]E = 0 Jutlog (2) ( d u = - T )  (9.11) 

O. 0254 

If ea is very small compared with e, 

0.0254 (9.12) 

The lethargy variable language was used in the expression for p in 
addition to the energy variable language because it is frequently written 
this way in texts and the open literature. In lethargy language, [ is 
called the average lethargy increase per collision. 
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9.3 SLOWING DOWN KERNELS 4 

According to the Second Fundamental Theorem 

sinB r Pf = Jm4ar2 K(r) g dr 
0 Bgr 

By using only the normalization condition 

SO3 K(r) 4ar2 dr  = 1 
0 

(9.13) 

(9.14) 

and no other property of K(r), a great deal can be learned about Pf. This 
is done by expanding (sinBgr)/Bgr in anbinfinite ser ies  and integrating 
term by term. 

a. If the reactor is infinite, io e. Bg = 0, then 

00 

Pf = J K(r) 47rr2 dr = 1 
0 

(9.15) 

sin x as lim- = 1 
X x- 0 

b. Now suppose the reactor is finite but large enough that Bg < <  1 so 
that the integral of the infinite ser ies  

(9.16) 

can be broken off at the squared term. When this  can be done, 

1 (Recall that 7 = - r2 > is the slowing down area.) In this case the 6 criticality is 

(9.18) 
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e 

a 

where M2 = L2 + T and is called the migration area.  M2 is one-sixth 
the mean square distance a neutron travels during slowing down, as 
a fast neutron? and during diffusion after thermalization. Hence, in 
large reactors, the critical buckling is closely approximated as 

(9.19) 

Fermi Age (Gaussian) Kernel: The age of a neutron of energy E is defined - 
as 

In lethargy language 

u D du 
7(u) = J - - 

UO =s 6 

(9.20) 

(9.21) 

Physically, 7 is one-sixth the mean square distance a neutron travels in 
an infinite medium while slowing down from the source energy Eo to 
energy E. Age theory is based on the assumption of continuous slowing 
down, which amounts to assuming [ < < 1. It gives 

2 / 4 f  e-r 
K(r) = (9.22) 

(474312 

Pf' e- B2 g. 7 

and the criticality equation 

(9.23) 

(9.24) 
a .. 

This result is in accord with the general result derived above. Age theory 
is a good approximation for graphite moderated reactors, in fact it was  
invented for the analysis of large graphite reactors. If fast neutrons are 
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moderated by Be, age theory is less successful as tBe = 0.209 while 
tc =- 0.158,  Age theory is no good at all for water moderated reactors 
because [H = l o  0 and slowing down can be accomplished in just a single 
collision between a neutron and a hydrogen nucleus. 

w 

Diffusion Kernel 

} Group 3 

Thermal Group 

A good approximation method for neutron slowing down by light nuclei 
can be obtained by the convolution of several diffusion kernelsn A dif- 
fusion kernel has the form 

e-r/L 
4T L2r K(r) = (9 ,25)  

where L is the diffusion length. It represents the number of neutrons per 
unit volume at a distance r from a unit point source as given by diffusion 
theory. In th is  treatment t h e  fast neutron energy range is divided into 
several subintervals called energy groupso All  neutrons in a given group 
are taken-to be monoenergetic, their energy being the  awerage energy 
for  the group. A different diffusion kernel is then assigned to each group. 
For sake of definiteness suppose three fast neutron groups with kernels 
K1 (r), K2 (r) and K3 (r) are selected along with the thermal group or 
level. This is a four group model. Let subscript 1 indicate the highest 
energy group, 2 the intermediate fast neutron group and 3 the lowest 
fast neutron group. L1> La, and L i  will be the  diffusion areas for the 
fast groups and L2 that for the thermal group, Li is one-sixth the 
mean square 

2 2  
2 

4 

I } Group 1 I 

} Group 2 

distance traveled by neutrons in the i-th group before they slow down into 
the next lower group. 

thermal group is 
The probability to slow down through all three fast groups into the 

Pf -: Plf x P2f x P3f (9.26) 
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where 

In the case of diffusion kernels these integrals are 

1 

Hence 

P F  

(9.28) 

(9.29) 

(9 .30)  

This approach (convolution of slowing down kernels) is similar to the 
probability model used in Section 9 . 2  to compute p. The diffusion kernel 
criticality equation is 

e 
k 0- 

2 2  2 2  2 2  ( l + L I B  ) ( l + L Z B  ) ( l + L g B  ) ( 1 t L 2 B @ )  
b -  (9 .31)  

An example of the accuracy of the four group method for a U235 water- 
moderated, base cylindrical reactor is given by Figures 9 .1  and 9 . 2 .  In 
this example synthetic diffusion kernels were used where L1 = 4.49  cm, 
La = 2.05 cm and L3 = 1 . 0  cm. L = 2.88  cm was used for the thermal 
group, Figure 9 . 1  compares critical height calculations for (1) Age 
Theory (b) Two-Group and (c) Four-Group with experiment. Age Theory 
is clearly not suited for water moderated reactors. The four-group cal- 
culation is quite accurate. In constructing synthetic diffusion kernels, 
the analytical fits are made so that the resulting kernels give the 
experimental slowing down area and the same number of thermal neutrons 
as experiment. The thermal neutron slowing down density given by each 
method is given in Figure 9 2. 
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Fig. 9 . 1  - Comparison of critical height 
calculations for a bare, finite 
cylindrical reactor. The 
moderator is water. H refers 
to hydrogen and U to the urani- 
um fuel 
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diffusion kernels 
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Fig. 9 . 2  - Experimental and calculated 
slowing down density, q(r), in 
water. q(r) is the number of 
thermal neutrons created per 
unit volume per second at a 
distance r from a unit source 
in this instance. 
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9 . 4  SOLUTION OF A TYPICAL PROBLEM 

Problem: A homogeneous mixture of 1 part  by atoms of U235 to 15000 
parts of graphite is to be used to construct a bare spherical 
reactor. 
Calculate (a) critical size 

(b) critical mass  

Assume the following v = 2 .  5 
con s t  ants: aa(U235) = 681 barns (0;) 

of (U235) = 580 barns ( a U )  
7 Graphite) = 350 cm 2 f  
L a (Graphite) = 2580 cm2 

p (Graphite) = 1. 6 gm/cm3 (pc) 
O a  (Graphite) = 0.003 barns (ac) a 

Solution: = 235 g/mol = 12  g/mol 

The calculation of k is simplified since in the absence of U238, we 
assume E = p = 1. Therefore 

580 1 
681 NC 0; 

a 

= 25 - 
1+-$iF 

where NC is the number of atoms of carbon per cm3 of the mixture and 
Nu is the corresponding number for uranium atoms. Thus 

= 2.00 580 1 
681 0.003 

681 

k = 2.5- 
1 + 15000- 

The Fermi Age is a function of Es, D and 5. It is simple to show that 
for low concentrations of heavy nuclei in light moderators, 7 is not sig- 
nificantly different from that of the pure moderator. Hence 7 for the 
reactor is equal to 7 (graphite) = 350 cm2. 

The same cannot be said however for L2 E D/Ca. Although D, the diffu- 
sion coefficient is not affected, the large absorption coefficient of uranium 
compared with graphite makes it important even in small concentrations. 
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2 D 
=: 
n 
c; + 2; 

Since L (Graphite) = - 

and ~2 jreactor) = 

it follows that 

L2 (gra hite) L~ (reactor) = .A- 
=a 1 + 7  

2 =160.0 cm . 2 580 - - 
681 

0.003 x 15000 I +  

Now, applying equation (9.24) 
2 -3 50B, 
c. 

= I  2.00 x e 
1 + 160.0 Bg 

2 
and therefore, Bg = 0.0014 = 

and R = 83. '7 cm. 

The slight dilution of uranium will not affect the atomic density of 
carbon. Therefore 

Avogadro's number x ~(graph i t e )  - 6.025 x pc - 
A& Atomic weight Nc= 

Therefore, since 

* -  6 . 0 2 5 ~ 1 0 ~ ~  mu - 
A: 

Nu = 15000 

3 where mu = mass of uranium per cm , it follows 

= 2.09 x 10-3 grams/cm3 pcAu - 1.6~235 
1 5000AC - 15000 x 12 mu - 

The critical mass  of uranium M: in the sphere is then 

4 
3 ME = muV = 2.09~10-~ x - a (83. 8)3 = 5.15 Kg 
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10, NON-UNIFORM REACTORS 

By a homogeneous reactor is meant a reactor where small-scale com- 
position is uniform and isotropic. AB1 cross  sections are independent of 
position in a homogeneous reactor. In non-uniform reactors the cross  
sections are position dependent and reactor calculations are more complex 
than those for uniform reactors, both in the conceptual sense and with 
regard to the mechanics of computation. All real reactors are to some 
degree non-uniform. The non-unlformEty usually consists of: 

1. 

2, 

3. 

The presence of a reflector which serves to deflect neutrons back 
into the fueled core and hence cut down fast neutron leakage. 
The presence of control rods which serve to regulate the power 
level of the reactor. 
Non-uniform fuel loadings which serve to increase the efficiency 
of the reactor by flatteying the power distribution. 

The materia; composithn in a nsn-uniform rea.ctor usually changes 
abruptly (discontinuously in mathematical language), Hence, at the inter- 
face between two different materials t h e  neutron flux h a s  to adjust itself 
to a compromise status between the two different characters it would 
exhibit in an infinite system composed purely of either of the two adjacent 
materials, The fundamenta2 assumption used in the diffusion 'hesry of 
non -unifo r m reactor a re  : 

1, The diffusion balance equation can be set up in each different, ma- 

2. At  the boundary between two segons  the flux and 

3. The flux is zero at the extrapolated boundary of all I__- external -- regions. 

If there are a 

terial  region and gives the neutron f h x  for each 

csntinuous 
re 

of different material regions the matching 
t each boundary becomes a very tedious of the flux and 

undertaking. 

10.1 REFLECTOR SAVINGS (WW 495-500) 
--__I- -.---.--.--L 

Figure 10.1 shows the effect of a reflector on the thermal neutron flux. 
The cross  hatched area represents the gain in flux integral instituted by 
the reflector and it is at Once clear that, given a core composition, the 
dimensions of a critical reilected core are smaErer than those of a critical 
bore core. The difference, 6, is called the reflector savings. 
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I Reflector 1 Reactor 1 Reflector 

Slow -neuti 
flux with 

DISTANCE FROM CENTER, cm 

Fig. 10.1 - Slow-neutron flux in spherical U 235 , 
water-moderated reactor with and 
without a beryllium oxide reflector. 
The maximum-to-average flux ratio 
in the core with reflector is  1.4;  
without reflector it is 3 .2 .  The re- 
flector, with extrapolation distance, 
is 30 cm thick. 
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Reflected reactor calculations usually begin with an estimate based on 
the all-thermal model which is then refined in a two-group calculation. 
If the reflector is thin (T<<Lr),  

n u 
6 2 2  T 

Dr 
(T = reflector thickness) 

and if the reflector is thick (T s L r ) ,  

c; 6 2 -  Lr  
Dr 

(Lr = diffusion length in reflector) 

(10.1) 

(10.2) 

If R is the core dimension, then the material buckling for critical opera- 
tion is 

and the criticality is 
f k 

(10.3) 

1 
(10.4) 

where L is the diffusion length for the core. 

The change i n  criticality, E, obtained placing a reflector characterized by 
6 on a reactor of dimension R is 

(10.5) 

i f 6 < < R  

10.2  ONE-GROUP CALCULATION FOR REFLECTED SLAB REACTOR 
(GE, 229-236) 

This example will show how a one-group reflector calculation is done. The 
sub script  'c' refers to the core region and the subscript 'r' to the re- 
flector region. Figure 10.2 describes the geometry for a slab calculation. 
h is the physical width of the core, T is sum of the physical width of a 
reflector slab t and the extrapolation distance dr. The fluxes aC and 
Qr are obtained by solving the coupled differential equation. 
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Fig. 10.2 - Reflected slab reactor 
geometry 
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using the boundary conditions 

@r (.,,)=(I ;Z 

( l o o  6) 

(10.7) 

(10.8) 

(10.9) 

(10.10) 

This gives 

@c (x) = A COS Bc x (10.11) 

(10.12) G r ( X )  = C sinh K . t + T - $  

A s  before A is determined by the power level of the reactor. The criti- 
cality condition is obtained by substituting G, (x) and G r  (x) from Equation 
10.11 and Equation l o e  12  into Equations 10.9 and 10.10, This gives two 
homogeneous equation for the constants A and C. The result is: 

(10.13) B h  
2 Dc Bc tan 2 = Dp K r  coth K ~ T  

A typical slab reactor reflector savings curve is given by Figure 10.3. 
The equation for 6 is obtained in the following way. By definition 

1 
2 

6 = - (ho - h) (10.14) 

where ho = T/B? is the critical thickness for an unreflected core having 
material buckling BF. This gives h in terms of 6 as in Equation 10.15 

(10.15) 
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Fig. 10.3 = Reflector savings (Curve B) for 
a slab reactor. h is slab thick- 
ness for a critical reactor (curve 
A) and T is the reflector thickness. 
Note that a 50 cm reflector allows 
a 40 percent reduction in H, and 
hence in fuel cost. 
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Upon substituting Equation 10,15  into Equation IO. 13 one obtains 

(10.16) 

Problem: Assume a graphite reflector for the  U235 -graphite reactor of 
Section 9.4 (a) IO cm thick (b) 50 cm thick, Since D, =- Dc Equations 
IOo 1 and 1002 for slab systems also apply to spherical geometry. Com- 
pute 6, critical volume and critical fuel mass 

a. Because T - 10 < L, 2 50 Equation 1 0 , l  gives 6 = 10 ern and there- 
fore a new critical core radius of RZef 
critical core volume is 

83.8 - 10 2 73.8 cm. The 

The critical volumc of the crifical bare core was 

Vunref .- 4 
- - 17 (83, 8)3 = 2.46 x 106 cm3 3 c 

Hence 

u 1,68 x 5,15 kg M - __ll_l__ ___- - 3.52 kg (10 cm reflector) 
C 2,46 

b. Because T -- 50 cm 2 L, use Equation 10,2 to obtain 6 = 50 cm, 
RFef - 33,8 cm, VZef = 1.62 x l o 5  cm3 and = 0.34 kgo 

10, 3 TWO-GROUP CALCULATION FOR A REFLECTED SLAB REFLECTOR -~~ - .~~ 

The number of fast neutrons produced per unit volume per sec is k 2 2  
<I2@ where Zzc is the  macroseupic absorption c ross  section for thermal 
neutron in the come  This is the fas% neutron source term. The balance 
equation for fast neutrons is therefore 

Dfc V2 - Z l c  41c 7'- kQc @zC - 0 Fast Neutrons (Core)(10. 17) 

The thermal neutron source i s  the product of the fast. neutron slowing 
down cross section X i c  and the fast flux @lC so the balance equation for 
thermal neutrons is: 
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.. 0 Thermal Neutron (Core) (10.18) 
D2c v 2  '2c - c2c '2c + Z l c  '€c = 

a In the reflector 

We now have four balance equations to solve simultaneously. 

Note that all of the balance equations are inhomogeneous excepting the 
fast flux equation for the reflector. (A differential equation is in homoge- 
neous if  it contains functions other than the unknown function one wants to 
solve for. For example, the inhomogeneous te rm in the core fast neutron 
equation is k22, @zC.) The solution to an inhomogeneous differential 
equation is equal to the sum of the solution to its homogeneous part and 
a particular solution speufically geared to the nattire of the inhomogeneous 
part, Le.,  

@ = @homo + 'particular 

The homogeneous parts of the four balance equations are: 

v2 elc + B 2 alC = 0, gives v 2 - 'Ic = ,132 

v2 a2c + ~2 
] core (10.21) 

= 0, gives v 2 *zC = -B 2 @2c 

(10.22) 

The homogeneous equations results for the core allow one to write 

(10.23) 



which have a non-trivial solution i f  and only if  the determinant (Cramer' s 
Rule) 

- (DlcB2 + C l c )  k =2c 
= o  

Clc - (D2c B2 + c2c) 

The criticality conditions is, therefore, 

(10.24) 

2 This is a second order equation for (Bm) core. The problem is to find 
the geometrical dimensions which give a geometrical buckling equal to 
the material buckling. This involves the interplay between the core and 
the reflector and constitutes the messy part  of the calculation. 

The two solutions for B2 are: 

, u 2 = ~ [ - ( + + + ) +  Jq] Jdk-=u 
2 Llc 2c I C  2c I C  2c - 

(10.26) 
r 1 

The general solution to the core equations a r e  linear corhbinations of 
the two solutions determined by ,u2 and - v 2 .  Let X by the solution be- 
longing to p2 and Y that belonging to - v2. 

A 2  X +  p2 X =  0 
(10.27) 

A 2 Y - v 2 Y = 0  

and 

aic = AX + CY 
(10.28) 

@2c = A' X + C' Y 
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TABLE 10.1 

SOLUTIONS OF WAVE EQUATIONS FOR NEUTRON FLUX IN REFLECTOR 

Geometry Z Z(T infinite) 
Infinite slab sinh Kr(1/2H + T - X) e-KrX 

Sphere 

Infinite cylinder 

sinh Kr(R + T - r) 
r 

7 

r 

Infinite slab 
0) 
k '  
0 '  u t  

Sphere 

, Infinite Cylinder 
I 

X 
. . ._ 

Y 

cos .Px cosh d x 

sin /-4 r sinh ?/r 
r r 

I 
1 

67 



1.5 

5 c;l 1.0 
Frc 
z 
0 
P; 
b 
5 0.5 

0 
0 20 40 60 80 

DISTANCE FROM CENTER OF REACTOR (cm) 

Fig. 10.4 - Typical two-group neutron flux distribution 
in a reflected slab reactor. The core is an 
aluminum-water U235 mixture for which 
m f / Z a t  = Z;s[/Zat = 4.4; the reflector is 
beryllium, for which U2f/Zat = Zs,@at 
= 97; and U = 17.5 is the lethargy range 
of the fast group. 



Table 10.1 lists the functions X and Y for slab, spherical and cylindrical 
geometry. It turns out that A and A', and C and C' are proportional to 
one another so that a 

@ l c = A X + C Y  
(10.29) 

where 

I 

(10.30) 

s2= [ Dlc 2 ] [ Lq 
Llc  D2c - v2 Lac 

Except for  A and C, @lC and @lC and @2c are now specified in te rms  of 
known numbers. 

Similarly the solutions to the reflector equations turn out to be: 

(10.31) 

1 
where Z1 and Z2 are given by Table 10.1 and S3 = - 

One determines the core and 
reflector fluxes an 
reflector interface. The matching equation are the following: 

AX + CY - F Z 1  =i'D 

(10.32) 
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A non-trivial solbtion for A, C, F and G exists if  and only if  the de- 
terminant of the coefficients for their unknown vanishes, i. e. , i f  and 
only i f  

One goes about solving this  by trial and er ror .  For example, suppose 
that for a given fuel, moderator, and reflector it is required to find the 
critical core dimension R for a given reflector thickness T. 

le  

2. 

First use R given by a one-group approximation and evaluate A -  
A will in general not be zero but from the value of A obtained one 
can make a good guess about how to change R so A will approach 
zero. 
Try successive R - guesses. Plot A versus R and use the R-value 
which gives A = 0 on the graph. 



11. LATTICE THEORY (WW, 610-695) 

The ~ ~ S Q E Z E C P  escape probability, p, and the fhermal iitilizaticrnj f j  
vary in  opposite directions when the fuel fraction, F, increases, e. g., 
f increases and p decreases. Because of this, there exists a particular 
fuel fraction, given a fuel and moderator material, for which the pro- 
duct pf attains a maximum value and, as a consequence, for which the 
infinite medium multiplication factor 

(11.1) 

al;sg, attains a maximum value (approximately). This circumstance suggested 
that it might be advantagous to collect the reactor fuel into either sheets, 
rods, spheres, etc. and arrange ?fuel elements" periodically within a 
moderator matrix. Such an arrangement of fuel elements embedded in 
moderator material is called a reactor lattice. The behavior of a lattice 
is much different than that of a homogeneous mixture of fuel and moderator. 
As is well-known, a natural uranium fuel-graphite moderator reactor is 
workable - only when the fuel is segregated in a lattice structure. (See 
Section 13.) It is impossible to construct a critical homogeneous reactor 
using graphite moderator and natural uranium fuel. 

Localizing the fuel concentration produces the following changes, rela- 
tive to the characteristics of a homogenized system, in thermal reactors. 

0 

1. f is decreased (minor disadvantage) 
2. p is markedly inceeased (major advantage) 
3. E: is increased (minor advantage) 

The double advantage arising from the increase in p and E offsets the 
relatively small  decrease in f by a considerable margin. An outline of the 
diffusion theory approximation for a reactor lattice will n8w be given 
as it pertains to the computation of f and p. 

11.1 THERMAL UTILIZATION (THERMAL NEUTRONS) 

Let Z;, and Zal be the absorption cross  sections, and Vo and V1 the 
volumes for fuel and moderator material, respectively. In a homogeneous 
system 

(11.2) 
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Because the reciprocal form, l/f, is most convenient in lattice theory, 
let u s  wri te  also 

(11.3) 
'hom =a0 vo 

In a lattice the f lux  in a fuel element, <ho, is generally different from 
the flux, @I, in the enveloping moderator matrix and the fuel element 
volume VO is different from the moderator volume V1 associated with 
it in the basic lattice cell.* The thermal utilization for a lattice is 

(11.4) 
* 

provided the cross sections Zao and Zal are independent of position in 
the fuel and moderator volumes, respectively. The reciprocal form of 
E q .  (11.4) is 

(11.5) 

The name "disadvantage factor" has  been ascribed to the ratio 

Assume a cell with fuel contained in  the region o<r<ro and moderator in 
the region ro-<r1 , r=rl, being the exterior boundary of the cell. Fig- 
ure  11.1 describes the general behavior of the thermal flux in a lattice 
cell. Because < %> / <@ o> is greater than unity one sees that 

SO that f < fhom whenever the flux behaves as it does in Figure 11.1. We 
will now show that this is, indeed, always the case. 

According to diffusion theory the neutron balance equations for the cell 
are 

*The basic lattice cell is a module of fuel and moderator of such geometry 
that a repeated ?patterntt  of this module gives the reactor lattice. e 
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Do A@o- Cao 9, 0 O<r<ro (fuel) (11.7) 

D1Aal - Cal a l +  q = 0 ro<r<rl (moderator) (11.8) 

3 where q is the thermal neutron source te rm (neutrons per  cm per  sec). 
There are three boundary conditions for these equations. Two of them are 
the usual conditions on the continuity of the flux and current at a material 
interface - which is r=ro in this instance. 

@o(ro) = @l(ro) Bnd Condition (1) (11.9) 

DoVn <Po (ro) = DIVn <PI (ro) Bnd Condition (2) (11.10) 

The symbol Vn means "directional derivative along the normal to the sur -  
face in queation. '* The third boundary condition 

Vn 91 (r1) = 0 Bnd Condition (3) (11.11) 

stipulates that the net thermal neutron flow between adjoining cells is zero. 
Our balance equations under these conditions have the solutions 

where CY = - D1 C' (ro)/Do K~ R' ( K o r o )  (11.14a) 

and f l  can be taken as unity. The functions R, R' , C and C are defined 
in Table 11. 1 for three cell geometries. 

One uses the solutions for 9, and a1 to obtain f in the following way: 

1. Observe that the production rate of thermal neutrons is qV1 i f  one 
assumes the thermal neutron production in the fuel is negligible. 
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2. 

a 
Observe that in an infinite system (the lattice not the cell) the number 
of neutrons absorbed is equal to the number produced. Since all cells 
are identical then qV1 is identical for all cells and hence the number 
of neutrons absorbed in each cell must be qV1 since Eq. (11.11) 
states there is no net neutron flow from one cell to another. 
Observe that the number of neutrons absorbed in the fuel element 
must be equal to the total neutron flow - into the fuel element. This 
total flow is 

Net flow into fuel element = D1 V4j1 (rg) S 

where S is the fuel element surface area and DIV 4j1 (r8) is the net 
current - into the fuel element at its surface r=ro. 

This phyeiaal reasoning gives. 

(11.15) Number of Neutrons Absorbed in Fuel element 
Number of Neutrons Absorbed in Cell 

f =  

(C' (r) is always negative so l/f  is positive) 

Substitution Eq. (11.14b) into Eq. (11.16) leads to 

By convention Eq. (11.17) is written also as 

1 
-= 1 + X + R, f 

(excess absorption) 

(relative absorption) 

(11.16) 

(11.17) 

(11.18) 

(11.19) 

(11.20) 
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! 

In this representation the words "excessTT and TTrelative?T refer to what 
would be the case - if the average moderator flux <a1> had the value @(ro), 
i. e., the interface value. 

(11.21) 
Moderator Absorption (If < Q > w e r e  @(ro)) 

Fuel absorption Ra = 

A -  

Moderator Absorption - C a1 VI @(ro) l+x = 1 + 
Fuel Absorption 

It is now possible to show that f < fhom because 

_ _  1 1  - - - 1 + X + R  - (l,ZalV1) 
fhorn Cao Vo 

This difference is positive because <ao> is less than +(ro). 

(11.22) 

(11. 23) 
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TABLE 11.1 

Geometry R( K j r )  

THE FUNCTIONS R, R', C AND C' ARE LISTED BELOW 
FOR THREE CELL GEOMETRIES 

R' (Kir) 1 ( K i r )  I' ( K i r )  

Plane coshkjr I sinh K i r  

Cylinder* Io ( K i r )  

*The Bessel functions I and K used here  are those defined in Watson's Bessel 
Functions and are always positive. 
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11 ., 2 RESONANCE ESCAPE PROBABILITY 

Define a "resonance" neutron utilization factor fR in exactly the same 
way the thermal (neutron) utilization factor is defined. 

(11.24) 
Number of resonance neutrons absorbed in the fuel fR = 

Total number of resonance neutrons absorbed 

Proeeeding formally in exactly the same way as in Section (11.1) one finds 

(lie 25) 

p can be shown to have the form 

-fRY( 1 -fR) p = e  (11.26) 

Now because fR will  be smaller than fR(hom), for the same reasons 
f < fhom, it f O l l O w S  that 

This follows because given x and E > 0 

(11.27) 

X - (X+E) -- 
1-x ' [ l - (X+E)]  e > e  

(11.28) 

where the association fR = x and fR(hom) = X+E > fR has been made to 
simplify motation. Inequality (11.28) is true because the exponent on the 
left 

X 

1 -x 

is smaller than the exponent on the right 

X + €  
1- (x+ E) 

by the amount E ,  
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It has-been shown that, diffusion theory, predicts that lumping the 
fuel into a fuel element (1) decreases f and (2) increases prrelative to 
their values were the fuel homogeneously distributed throughout the mod- 
erator.  

11.3 DISADVANTAGE FACTOR 

From Equations (11.5) and ( 1le 17) the disadvantage factor is 

(11.29) 

The disadvantage factor measures the loss in thermal utilioation, suffered 
by lumping the fuel, as a consequence of the thermal flux depression which 
occurs in the fuel element relative to the surface flux (ro). d > I because 
thermal neutrons are produced, by slowing down of fast neutrons, in the 
moderator. These thermal neutrons then diffuse toward the fuel elements 
which a m  stmi-ig sinks (absorbers) for  tiherma! nectrons therefore 
cause a flux depression within themselves; a general characteristic of 
any strong sink which is fed by an  external source. 

If the moderator diffusion coefficient were infinite the second te rm in 
Equation (11.29) would vanish and d would arise purely from the fuel ele- 
ment self-shielding te rm Q (ro)/< a0 >. In the Oak Ridge X-10 reactor the 
self shielding part of d is 1.1 and the total disadvantage factor is 1.8. Be- 
cause the minimum value for d is unity, one sees that, in this reactor, 
non-uniformity of the flux in the moderator is about 7 t imes more impor- 
tant a contributor to d than is flux non uniformity in the fuel. 

a 

For a given ratio Vo/V1 and equal fuel element volume to surface ratios, 
f is largest for slab fuel elements and least for spherical fuel elements. 
The important difference between these geometries being that in the slab 
geometry there is no shrinking in  the areal cross section as the diffusing 
neutrons approach the fuel element. This shrinking of areal cross see- 
tion for fuel elements with curved surfaces is called "bottle necking." 
Bottle necking alwaysdecreased f. One way to partially cure bottle neck- 
ing is to place an "air" gqp between the fuel element surface and the 
surrounding moderator ., 



12. EFFECTIVE RESONANCE INTEGRAL - ELEMENTARY 
THEORY (GE, 252-257) 

Before a detailed knowledge of the energy behavior of neutron cross  
sections existed and before the advent of high-speed computers, the 
resonance escape probability was determined experimentally e It was then 
expressed i n  terms of a quantity called the effective resonance integral 
In approximate form 

(120 1) 

If one assumes that C a Cao for the fuel, then it follows that 

(12,l) 

where No is the number of fuel nuclei per cm3* The effective microscopic 
absorption cross section (Dao)eff is defined as 

(12.3) 

The quotient &/No is thought of as the scattering cross  section per fuel 
nucleus, i. e . ,  per absorber nucleus, and the effective resonance integral ,  
Ieff, is defined as 

UO 

In terms of Ieff, 

(12.4) 

p = e  (12. 5) 

It must be assumed that Es is constant in lethargy in this representation 
of p. 

In pure fuel No = N (total number of nuclei per cm3 and one has 
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If the fuel constant is very dilute, i. e., No - 0, one has 

Hence bff takes its minimum value in pure fuel and its maximum value 
in a dilute fuel system. 

The pre-factor (No/tXs) in the exponent of Equation (12.5) behaves in 
an opposite manner. Its maximum value occurs for No = N, its minimum 
value for No = 0. The value of p, therefore, depends on two oppositely 
varying factors. The "advantage" in the tendency for p to decrease with 
increasing NO, associated with the decrease in (aao)eff, is measured by 
the so-called volume adwtage factor, VAF, 

(12.6) 

where N1 is the number of moderator nuclei per cm3. Physically, VAF 
is the reciprocal of the scattering probability. (Prove this statement. ) 

From elementary slowing down theory (GE, 255; 147-160) the neutron 
flux as a function of energy behaves as 

1 - 
1 @(E) O= - E (om + constant) 

(12.7) 

Hence if there is a large amount of fuel the resonance flux is depressed. 
(Resonance flux is the neutron flux for the neutron energy range in which 
the exceptionally large resonance absorption cross section peaks occur 
for U238 or  U235)0 This explains why the effective resonance integral 
decreases as No increases. Figure 12.1 illustrates this behavior. Because 
of the depression in resonance flux, the product &qE)  is smaller in the 
resonance region than it would be if 4(E) were not depressed and the number 
of resonance absorptions is decreased. The U238 cross section in the 
resonance region is plotted in Figure 12.2. 
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NEUTRON ENERGY (E) - 
Fig. 12.1 - Resonance flux depression 
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13. EFFECTIVE RESONANCE INTEGRAL - REACTOR LATTICE 

Ieff, in barns, is defined such that 

is the total number of absorptions in a fuel element of volume Vo with No 
fuel nuclei per unit volume for a unit flux per unit lethargy. Ieff is de- 
termined experimentally and expressed in te rms  of two types of empi$ircal 
equations 

(13.2a) 

(13.2b) 

the latter being the older form. Usually it is measured with respect to 
the flux at the fuel element surface cP(ro) and in this c8se flux depression 
in the fuel element is automatically accounted for in the experimental 
measurement. 

In other instances it is measured such that the mass te rm Im must be 
weighted by < 4j0>/+(rD) to account for flux depression in the fuel. 

13.1 Ieff DEFINED FROM EQUATION (13.2a) 

By definition the fuel region absorption is 

In this case 

(13.3) 

(13.4) 

(13.5) 
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If one uses Ea1 = - ''1 it follows that 
AUR 

13.2 Ieff DEFINED FROM EQUATION (13.2b) 

If I,ff is taken as 

then from Equation (13.7) 

But 

so 
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(13.6) 

(13.7) 

(13.8) 

(13.9) 

(13.10) 

(13.11) 



This is a good representation for fR  

In this equation: 

Do = 1/3C 

(13.13) 

(AUR is the width of the resonance region in lethargy units) 

1 3 . 3  EMPIRICAL EXPRESSION FOR Ipff 

Uranium metal 

t t 
IM IS 

URANIUM METAL, Ieff I N  BARNS 

S/M I 0.0312 I 0.0625 1 0.125 I 0.250 I 1 7 . 2 1  I 8.72 111.26 115.21 1 
I Ieff (Theory) I 7 . 1  I 8.9 111.6  115 .3  I 

Value = 240 with 00 dilution 
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1 1 
13.4 j- AND - COMPARED 

P 

I I - 

I 

1 
f 

i. e . ,  f decreases with increasing % at constant V1/Vo 

a. - increases with increasing at constant V1/Vo 

because of flux depression in fuel 

1 
f 
because of more absorption in moderator 

b. - increases with increasing V1/Vo at constant Ro 
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1 
P 
i. e., p increases (flux depression) 

1 
P 

i. e. 

a. - decreases with increasing Ro at constant V1/Vo 

b. - decreases with increasing V1/Vo at constant Ro 

p increases (more activity in moderator) 

Optimum values for p and f therefore exist at which the product pf 
is maximum. In th i s  respect it is interesting to observe how pf behaves 
in a homogeneous natural uranium-graphite system. The values of 
Ieffy p, f and pf are listed in Table 13.1 for this system. 
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TABLE 13.1 a mSuRPTION P*4RA!.E TERS FOE HoM@GENEOuS 
NATURAL URANIUM GRAPHITE SYSTEM 

.. 
Ni /No 'eff P F PF 
200 72 barns 0.579 0.889 0.515 
300 87 0.643 0.842 0.541 
400 100 0.682 0.800 0.546 
500 112 0.693 0.762 0.528 

a 

This system cannot be made critical because (pf),, 2 0.55 is 
too small to give 

k =  q e p f  = 1 

Because q = 1.3 and E = 1 03 for natural uranium fael, q E = 1.34 and 
hence pf must exceed 1/1.34 = 0.745 for the system to be critical as 
an infinite system. The fact that (pf)mm = 0.55 < 0.745 precludes 
criticality . 
An ingenious solution to this problem was devised by Wigner and 

Szilard which was applied to the construction of the first nuclear reac- 
tor. This was to lump the uranium metal in balls, separated by graphite. 
Since the uranium atoms do not slow neutrons down significantly, the 
neutrons which are produced at energies higher than the resonance 
energies in the uranium will diffuse into the graphite region. These, 
then stand a good chance of slowing down past the resonance region 
before colliding with another uranium atom. Obviously the distance be- 
tween lumps is a very crucial parameter of the heterogeneous reactor. 
As the lumps become further apart, we saw that f will decrease and p 
will increase. There is therefore again an optimum lump size and spacing 
for maximum pf .  

In a finite reactor the leakage of neutrons must also be accounted for. 
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14. REACTOR CONTROL AND FISSION PRODUCT POISONING 

Obviously, more fuel than necessary for criticality must be loaded into 
a reactor which is to operate at a measurable power level. In order to get 
up to a significant power, the reactor must be made supercritical for a 
time, Also, as fissions occur, tending to reduce the multiplication factor 
there must be some method of raising the multiplication factor continuously. 

The rate of fuel  burnup can be estimated from the energy release per 
fission. 3 ,1  x 1O1O fissions per second are required to produce 1 watt of 
power. The rate of fuel burnup will be approximately one gram per megawatt- 
day, For low power reactors thic can be almost negligible as far as de- 
termining excess reactivity requirements. 

14.1 FISSION PRODUCT POISONING 

An important factor in  the excess reactivity requirement is the fission 
product buildup. When the reactor is designed, materials of as low an 
absorption cross section as is practical are used, Howevey, as fission 
begins, the fission fragments begin to contaminate the core. As far as 
the effect of the fission products on the multiplication factor goes, they 
can be divided into two categories - short lived and long lived isotopes. 
The long lived isotopes buildup steadily in a manner proportional to the 
power-time history of the reactor. In Figure 14,1 obtained by R. N. 
Deutsch and published in a memo at G. E. ?s Knolls Atomic Power Labora- 
tory, tkie effect of stable fission product poisoning is plotted in terms of 
equivalent grams of BI0 per kilogram of fuel as a functicn of fractional 
fue1 burnup, To perform a v%urnoutjv calculation, one would first com- 
pute the amount of fuel destroyed in a given time from the known power 
level of the reactor and then use Figure 14.1 to derive the fissisn-pro- 
duct pciisoning effect in terms of equivalent B1Oa Then the k of the reactor 
can be computed using a B10. cross  section of $810 barns. If the reactor 
was initially critical @=I) a value of k e a  will be derived for the burnt- 
out reactor, The eifference in k must be compensated for  by control. 

A more important form of the poisons is the short-lived, high cross 
section poison Xe135, This isotope has the highest known absorption 
c ross  section of any isotope (about 3.5 x 10b barns). It has a half-life 
of about 14 hours. Although Xe135 is formed as a fission product to a 
small extent: the major source bf Xe135 is by the radioactive decay of 
1135 which is the daughter of Te135p a fission product. 

The concentration of Xef35 as a function of time is determined by the 
rate of buildup, due to flux and decay of Iodine, and the rate of loss which 
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Fig. 14.1 - Fission product buildup in enriched thermal reactors 
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is due to Xe135 burnup (neutron absorption) and Xe135 decay. These two 
competing effects result in an equilibrium concentration occurring after 
approximately 50 hours of steady operation. For a high flux reactor 
( Q, z 1014 neuts/cm2-sec) the equilibrium effect on reactivity is about 
5 percent. This in itself i s  not excessive. However, if after this con- 
centration i s  built up, the reactor i s  shut down the Xenon concentration 
will begin to build up rapidly. This is due to the fact that the neutron burn- 
up term disappears. Xenon i s  still  being formed, however at the same 
rate, due to the decay of Iodine. I_ For a high flux reactor, this effect will  
peak at about 12 hours after shutdown with a reactivity effect of almost 
40 percent, decaying after about two days to negligible proportions. If 
it is necessary to restart during the period of large buildup, a large 
amount of extra fuel (xenon override) must be present. in the reactor. It 
should be mentioned that since the fission product poisons are due to 
large thermal absorption cross sections, reactors in which most of the 
fissions are produced by non-thermal neutrons, namely intermediate o r  
fast  reactors,  do not exhibit this poisoning effect. 

14.2 REACTOR CONTROL 

Another effect requiring excess reactivity is due to high temperature 
operation. To be stable, reactors are designed to have negative tem- 
perature coefoficients of reactivity. Then, if something causes the power 
to rise, the temperature of the reactor will rise and the reactivity will 
become less than 1, reducing the power to its original level. This of 
course means that when the reactor is stayted up f rom the cold condi- 
tion, reactivhty must be added as the average temperature of the reactor 
increases. 

In order to compensate for the extra reactivity until it  is needed, two 
methods are ava%l,able. 

Ccmtpol rods, the most common method employed to date consist of 
rods filled w3.h a poison such as boron or  cadmium. The rods can be in- 
serted inta the reactor to reduce reactivity and removed to increase it. 
(See Appendix for optional location. The insertion of a poison rod can 
also be synchronized with the removal of a fuel rod to increase the effect. 
This method, though effective, leads to local distortions of flux which tend 
tu  reduce the efficiency of the power production, 

A more recent solution to the reactor control problem is the use of 
burnabie poisons. This I s  the insertion into the reactor, in a permanent 
fashion, neutron poisons which, partially at least, compensate for the 
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excess fuel which burns out with time. In theory, the poison should have 
the identical cfoss section as the fuel, so that as fuel burns out, the poison 
burns out at the same rate, the reactivity remaining constant with tine. 
At present boron, having a cross section the closest to the desired value, 
is used, but tends to burn out faster than the fuel. Thus the excess re- 
activity begins to increase with initial operation of the reactor, and then 
decreases. 

a 

The discussion on controls in this section has implied solid fueled re- 
actors. In the case of liquid fuel reactors, which have not been exploited 
successfully as yet, the problems of control are largely alleviated. Fuel 
solutions can be diluted o r  strengthened continuously as required. Also 
xenon is an insoluble gas in these reactors and this problem disappears. 
This situation is one of the major advantages of the liquid fueled (either 
aqueous or liquid metal solution, o r  slurry) reactors. 
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15. REACTOR DESIGN PROBLEM 

Part One: Diffusion Kernel Computation 

Design a minimum volume bare cylindrical reactor to operate at 500°F. 
This reactor is to furnish 30 megawatts of power for 30 days. (No less than 
30 days and no more than 35 days.) Assume 3.1 x 10l6 fissions/sec will 
produce 1 megawatt of power. Allow no more than 0.15 excess criticality 
factor at the beginning of operation. Summarize the characteristics of 
the reactor by giving: 

1. Physical dimensions, radial buckling and longitudinal buckling. 
2. Fuel loading, 
3. Excess criticality at the s tar t  of operation. 
4. Plot of longitudinal and radial thermal flux. 
5. Plot oif excess criticality as a function of operating time. 
6. Plot of control system capacity required to maintain critical opera- 

7. Fast neutron non-escape probability. 
8. Thermal neutron non-escape probability. 

tion as a function of operating time. 

The computational work is to be based on the following specifications: 

1. Use a water moderator (ordinary water) and U-235 fuel. These are 
to be uniformly mixed and the finite volume of the fuel material 
accounted for i n  the computation. 

2. Treat fast neutron slowing down according to the four kernel (dif- 
fusion kernel) method summarized in Section 9.3. 

3. Compute power from the equation 

Pgmegawatts) = (3.1 x I O ' ~ ) - ~  E C f Q ( r ,  z) dr dz 

4. Use uniformly distributed cadmium as a control system. Assume 
the microscopic absorption cross-section for thermal neutrons is 
3700 barns but is zero for all other energies. 

5. Assume that poisoning from iission products can be represented by 
the method of using an equivalent amount of Boron-10 absorption 
with the Boron- 10 uniformly distributed. Assume the microscopic 
absorption cross section for thermal neutrons i s  4000 barns but i s  
zero for all other energies. The amount of Boron-10 to use in this 
method is given in Table 1.0 as a function of the amount of U-235 
consumed during operation. 
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TABLE 1.0 

Fractional Grams of Boron-10 per 
Burn-up Kg Of U-235 

0 0 
0.025 0.085 
0 -050 0.105 
0 -075 0.120 
0 . 100 0.135 
0 . 150 0.155 
0.200 0.170 
0.300 0.200 
0.400 0.225 
0.500 0.250 

6. All cross  section information required is given in Table 2.0. 

Part Two: Multigroup Method 

Set up the multigroup equations for a Be-U-235 spherical reactor. 
Evaluate the group constants. This will not be a thermal reactor and in 
the multigroup method f a s t  fissions are explicity accounted for in each 
fast group as well as at the thermal level, Use the following fast groups: 

Group Lethargy Range 

1 
2 
3 
4 
5 

Thermal 

0 -  3.0 
3.0 - 8.0 
8.0 - 15.5 
15.5 - 16.5 
16.5 - 18.966 

18.966 ( 500°F) 

Use  age theory to estimate the fuel loading and reactor size; this will 
give some approximate numbers to use in computing the group constants. 
Try  to fix things up so that the reactor would run at least ten days at 30 
megawatts power, in the age theory approximation, 

ment for a computer. Include a criticality computation. 
Set up the finite difference equations one would use in coding this treat- 

Compute the group constants according to the method given in the class 
notes (Appendix 1 ). 
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APPENDIX 1 : MULTIGROUP EQUATIONS 

Consider the lethargy range (0,ut) to be divided into n intervals of 
width U1, . . . , Un such that 5 < < Ui for all i. The average number of col- 
lisions a neutron must experience to t raverse  the i-th group, in  the case 
of pure scattering is 

Let ;Ti be the "average" c ross  section for the i-th group and @i(x) the 
neutron flux for the group. The number of neutron collisions per cm3- 
sec is then 

Collisions 
cm3-sec c = X i  @i (x) 

The ratio c/A is, therefore, the number of neutrons which scatter through 
the i-th group per unit volume per sec. 

c/A = 6 X i  <hi (X)/Ui (3) 

In the base of pure scattering the diffusion balance equation for the i-th 
group is 

0 

for a steady 

Si (x) = 

where 

state. The source term has the form 

F: E f (u) du 
Ui 

(5) 

f (u) being the p. d. f. for fast neutron lethargy at fission. In the present 
notation the thermal group is the n-th group which is considered to  have 
zero width, i. e., monolethargic. The thermal balance equation is 
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Note there is no fission source te rm for the thermal level. 

One can account for absorption by altering one te rm in Equation (4). 
When absorption is present c/A, in Equation (3), represents the re- 
moval of neutrons from the i-th group by either scattering o r  absorp- 
tion and hence will still serve as a loss term. The scattering entrance 
te rm for neutrons slowing down out of the (i-1)th group is 

and s o  the  diffusion balance equation becomes 

n 

The parameters (Di, Cis  Csi} a r e  averages of D ( U ) ~  C (u) and C s  (u) 
over t h e  groups i=  1, a 

which the average is performed is to require that: 
n. One way to specify the particular way in 

1, 
2, The total current for t h e  i-th group is given by 

r 2 y i  for the i-th group is that given by the diffusion point kernel 

3. The total number of neutrons passing from the (i-1)th group to the 
i-th group is consistent with the absorption escape probability for 
the (i-19th group. 

Condition [l): In diffusion theory one has 

In t h e  group balance equation the analog to C a  is the removal c ross  section 
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a 

and so the < r 2 > i  condition requires that 

It can be shown that (Weinberg and Wigner p. 330) 

Hence one arr ives  at the condition that the quotient &/Xi has the form 

Condition (2): The current requirement is met by averaging Di on the 
basis of flux weighting. 

In the asymtotic form 

du 
Const. 
5 2 (4 (u) du = 

Hence 

(13) 

a 
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Bert from Equation (12) 

J [D ( u > / Z  (u)] dU = Di Ui/Ci 
Ui 

so 

Di and C i  are thus computed from Equation (14) and Equation (16), 
r e spe ctlv e ly n 

Condition (3):  This condition determines how to compute C s i  so that its 
effect on the computation will be consistent with the interpretation of Ci .  
This will be the case i f  

Scattering Loss 
Seato Loss f Abs. Loss = Pi - - _ _ - - - ~ -  

i. e. 

du 

Integration of Multigroup Equations 

Having obtained X i 2  Dip and CSi one integrates Equation (8) by assuming 
a spatial distribution for ather (x) and then solvin Equation (8) for 6,1 
then 9 2  - - -  etc down through 6,ther (x) again. If 
is solved; if  not one reiterates to get 

= the problem 

‘ I  

until 9:“) = @!m-l)o When t h i s  occurs t h e  problem is solved. The criti- 
calafy constant IS t he  ratio of the neutron populations in successive genera- 
tions, provided t h e  spatial variation of the  flux from one generation to the 
next remains the same. Once the fluxes remain proportional to each other 
the  criticality factor is t h e  ratio of the fluxes €or the same group for two 
consecutive iterative solutions 

1 

0 



APPENDIX 2: PERTURBATION THEORY 

Perturbation theory is used to see what effect small changes in reactor 
composition have upon its operating cnaracteristics. It is useful iri cai- 
culating : 

1. Effectiveness of thin control rods 
2. Mean generation time 
3. Criticality change due to fuel depletion 
4. Criticality change due to poisons 

A detailed discussion of perturbation theory is beyond the scope of these 
lectures. The general idea, however, is this: A realistic reactor can be 
thought of as a "perturbation" of an idealistic reactor model for which, 
at least, one can obtain a solution for flux, criticality, etc. The char- 
acteristics of the idealized model are taken as the "unperturbed" state, 
and the characteristics of the realistic reactor derived using perturbation 
theory. The perturbations being the differences between the realistic and 
idealized systems. 

a. Importance Function \k*(3 - Control Rod Placement 

The importance function \k* (a tells bne how many daughter neutrons an 
originally introduced neutron at position r" will ultimately supply. Intui- 
tively think of the situation this way: A neutron born at the surface of a 
reactor has a good chance of escaping. It can't be  as important a producer 
of daughter neutrons, therefore, as a neutron born at the center of the 
reactor. In one group theory the importance function is proportional to 
the flux and can, indeed, be thought of as being identical to the flux. We 
will restrict  ourselves to this special case. In this restricted sense the 
statistical weight W of a volume element A'ir is 

0 

Reactor 

and the criticality change 6C arising from a change 6Za in the non-fission 
absorption c ross  section in A r ' i s  

In a bare  cube reactor, a volume element AV at the center of the cube 
has statistical weight 

W(AV) = 8 A V D  
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where V is the cube volume. Hence a change 6Ca in  this central element a 
AV is eight times as effective in changing C as the same total change 
distributed uniformly over the entire volume. This hypersensitivity of a 
reactor to conditions at its center makes a centrally placed control rod the 

that the rate of change in  C for a unit lengthof control rod movement is 
greatest when the control rod is inserted with its tip at the center of the 
reactor. Hence regulating rods are usually only inserted half-way to 
maximize response time. In the above treatment @ is the unperturbed 
flux in a homogeneous bare reactor prior to the unpositionof the per- 
turbation 62,. 

most effective control rod, provided it is not fully inserted? It turns out .* 

be Effect of Fuel Depletion 

(c is a constant) 

c. Reciprocal Lifetime 

v = neutron velocity 

d. General Change in C: 6C 

This shows absorption peSturbation effects go as a2 but diffusion 
perturbation effects go as ( V  
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APPENDIX 3: ELASTIC COLLISIONS 
(Neutron Slowing Down Mechanism) 

. Neutrons can penetrate matter over large distances. Only by direct  
collisions with nuclei can neutrons be affected in any way. Electro- 
magnetic and electrostatic forces do not affect it. The force of gravity 
has a negligible affect. 

a fish pond, discovered quite by accident, that the radioactivity produced 
in targets bombarded with neutrons is greatly increased when the neutrons 
are passed through a hydrogeneous material. He showed that the neutrons 
were slowed down in this material, without being absorbed strongly, and that 
the targets had approximately l /v  type cross sections, increasing the 
reaction probability. 

In 1934, Fermi, who was in the habit of storing his neutron source in 

For  materials of low atomic weight, the neutron slowing-down mechanism 
is elastic scattering. To examine the qualitative and quantitative aspects 
of scattering by light nuclei, the center of mass (C) system of coordinates 
is resorted to since the results appear in relatively simple form. Whereas 
in the laboratory system (L) the target nucleus is assumed to be at rest 
before the collision, in the C system the center of mass of the neutron 
and nucleus is assumed to be at rest. The collision process is then 
described from the viewpoint of an observer moving with the center of 
mass. Figure A3.1 shows the relationship between the two systems 
pictorially. 

0 

In the L system before collision, the neutron of mass m moves toward 
the nucleus with speed vo, momentum mvo and energy Eo. The nucleus 
of mass  IV+ is assumed to be at rest. From the definition of center of mass: 

mr + MtR 
m +  Mt 

R c =  - 

Since R = o,* 

(A3.1) 

Here vc is the velocity of the center of mass. 

After the collision, the neutron moves with speed v at some angle 4p 
with the original direction. 

- d  
dt * R E - R  
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Relationship of laboratory system to the center of mass  system 

CENTER M~ 

m 

t Mt 

(a) L system before collision (b) L system after collision 

----m---- ---------I)------- 

m 

(c) C system before collision (d) C system after collision 

Fig. A3.1 - Neutron slowing down mechanism 
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In the C system before collision the neutron moves to the right with 
speed 

M L  
Mt +m 

vo - vc = vo (A3.2) 

and the nucleus moves to the left with speed vc. Thus the total momentum 
of the C system is 

m 
Mt +m 

(A3.3) 

A vector diagram of the relationship between the two coordinate sys- 
tems is shown in Figure A3.2. 

4 0  

Fig. A3.2 - Vector diagram relating neutron velocity 
and angle in L and C systems 

In the C system, since the total momentum is conserved and is zero, 
when the neutron is scattered to an angle 8 ,  the nucleus must travel in 
the direction 180° + 8. For example, let us look at the two extreme cases 
of elastic scattering: 

(a) A glancing collision i. e. 8 = 0. By applying the vector addition in 
Figure A3.2: 

Thus E = Eo 

(b) A head-on collision i. e., 6 - 180'. By the same method, 

E -  Thus - - 
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In this collision the neutron suffers i ts  maximum energy loss. Note, 
this energy change is in the L system. In the C system, the neutron 
energy does not change. 

From example (b) we see that for  a neutron scattering in graphite (M=12), 
[E/Eo] max = 0.72. In hydrogen, [E/Eo] max = 0. The neutron then, can 
lose up to 28 percent of its energy in a collision with a graphite atom and up 
to 100 percent of i ts  energy in  a collisi,on with hydrogen. 

Applying the law of cosines to the vector diagram Figure A3.2, we see 
that: 

(A3.4) 

The energy ratio is then, in terms of 8: 
Mt 2 + m  2 +2Mtmcos@ 

V E/E, = 7 = 
vO (Mt+mP 

Letting Mt/m = A, 

A2 + 1 + 2Acos8 
(A+l) 

E/E, = 

(A3. 5) 

(A3.6) 

The law of sines can now be applied to find the relationship of 8 to \k: 

Expanding sin(8 - XI!) we arrive at the result: 

A s in  8 tan*= 1 + A COS e 
t 

(A3. 7) 

: c 

(A3.8) 

We have now in equations (A3.6) and (A3.8) the neutron energy decrement 

What we would like to calculate now is - after a collision from an initial 

per collision as a function of A and *. 
energy Eo, what is the probability that a neutron has an energy E ?  Or ? 

a given a large number of neutrons scattering from energy Eo, what is the 
average'energy of the scattered neutrons. 
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Assuming that in the C system the scattering probability is isotropic, 
the number of neutrons, dN that wi l l  have energy E after a collision is 
equal  to the number scattered to angles between 8 and 0 + d0. This is 
simply the area on a sphere between 8 and 8 + de divided by the total area: 

2nr (sin e) rd0 N 
2 

- -  - sin8 d 8  d N = N  4nr2 

Differentiating equation (6.23) with respect to 8, 

2 A s i n e  d e  
(A + 1)2 dE = - Eo 

(A3.9) 

(A3.10) 

The isotropy of scattering in the C system is the essential reason for in- 
troducing that system. In the L system, the scattering is predominantly 
forward, with (cos p)ave = 2/3A. 

Substituting N for 8 from Equ. (A3.9) into A3.10) we find that 

dN (A+1)2 1 dE - -  - - 
N 4A EO 

(A3.11) 

is the probability that a neutron with init ial  energy Eo will have an energy 
between E and E + dE. The average logarithmic energy decrement <& is 
a te rm which we find useful in shielding and reactor problems. 

(A3.12) 
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This  is easily integrated by substituting x = E/Eo giving the result: 

A- 1 I n  ~ 

2A A+l 
(A- 112 

[ - 1 +  (A3.14) 

Elements having 5 as large as possible have the best slowing down pro- 
perties. FOP A >. 10 the approximation 

2 
A+2/3 

< =  (A3.15) 

is accurate to at least 1 percent. Some representative values of 5 are shown 
in Table A3.1. 

TABLE A3 .1  

Mat el- i al A 
H 1 1 
D 2 0 . 7 2 5  
Be 9 0 ., 209 
C 12 0 .  I58 
u 238 0 0084 

18 0 948 H20 

To calculate an  average <(> for mixtures, o r  compounds, assuming 
molecular binding effects are negligible we can use the formula: 

(A3. 16) 

where ci  are the logarithmic energy decrements for  the pure elements and 
xsi are the macroscopic scattering CFOSS sections for the elements in the 
mixture. In this manner it is calculated that 5 ( H 2 0 )  = 0.948, 
0.570, 5 @eo) = 0.173. 

E(D20) = 

Materials having large [ and large 2, are the more efficient slowing down 
media. If furthermore, a material has a law Za, it is a good moderator. 
This beads to the "figuse of meritv' called the moderating ratio = 5Zs/Ca, 
shown in Table A3.2. Physically the moderating ratio is 5 times the ratio 
q the scattering probability to the absorption probability, io e. , 
scattes)/(prob, to be absorbed). 

[(prob. to 

L 

, 
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TABLE A3.2 

J .  

Moderator Properties 
Moderator 5 Z S  W Z a  

Helium (N. T. P. ) 0 . 9 ~ 1 0 ' ~  45 

Water 3.27 cm-1 149 
Heavy Water 0.256 7760 

Beryllium 0.181 146 
Carbon 0.061 234 
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APPENDIX 4: SOME STANDARD KERNELS 

la  Moment form of the criticality equation 

C = kPzP+ 

p f 

pt 

1 L  

fast neutron nonescape probability 

thermal neutron nonescape probability 

By the second fundamental theorem of reactor theory 

sin Br 
Br  AsB-0--1 and P f = 1  

i. e .  JmK(x,x ' )  -- dx = 1 in an infinite medium 
0 

4 
- -1--+--  

X 6 120 .... sin x - x2 x 

Two terms in the series give 

B2 
2 J4nr2K(r) d r  - - sr2 K(r)(4nr2dr) 6 

sin Br 
Br  This is valid as long as ~ G 1 - B r  i. e. very small B 



i. 

4. Diffusion Kernel 

-KIX-X' I K 2  = - 1 
7 9 e - -  K2 K(x, x') = - -  4nIx-X'I 

5. Convolution Kernels 

All odd moments vanish, and in series form, 

2. Gaussian Kernel 

2 K* (B) = e-B (Age theory) 

3. Single Collision Kernel 

1 e-Co1x-x' I K(x,p') = C - -  - -  O 4nlx-x'IZ 

In water K(x, x'), Single collision, is best for E > 100 kev and 
K(x,x'), Gaussian, is best for E < 100 kev. 

- -  
- -  
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The sJowing down kernel is then 

' .  
T~ : 2 Mev to 100 kev 

72 : 100 kev to thermal 
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